--- language: ar datasets: - arabic_speech_corpus - mozilla-foundation/common_voice_6_1 metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: muzamil47-wav2vec2-large-xlsr-53-arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 (Arabic) type: mozilla-foundation/common_voice_6_1 config: ar metrics: - name: Test WER type: wer value: 53.54 --- # Wav2Vec2-Large-XLSR-53-Arabic Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Arabic using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import librosa import torch from lang_trans.arabic import buckwalter from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor asr_model = "muzamil47/wav2vec2-large-xlsr-53-arabic-demo" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def load_file_to_data(file, srate=16_000): batch = {} speech, sampling_rate = librosa.load(file, sr=srate) batch["speech"] = speech batch["sampling_rate"] = sampling_rate return batch processor = Wav2Vec2Processor.from_pretrained(asr_model) model = Wav2Vec2ForCTC.from_pretrained(asr_model).to(device) def predict(data): features = processor(data["speech"], sampling_rate=data["sampling_rate"], return_tensors="pt", padding=True) input_values = features.input_values.to(device) try: attention_mask = features.attention_mask.to(device) except: attention_mask = None with torch.no_grad(): predicted = torch.argmax(model(input_values, attention_mask=attention_mask).logits, dim=-1) data["predicted"] = processor.tokenizer.decode(predicted[0]) print("predicted:", buckwalter.untrans(data["predicted"])) return data predict(load_file_to_data("common_voice_ar_19058307.mp3")) ``` **Output Result**: ```shell predicted: هل يمكنني التحدث مع المسؤول هنا ``` ## Evaluation The model can be evaluated as follows on the Arabic test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset from lang_trans.arabic import buckwalter from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor asr_model = "muzamil47/wav2vec2-large-xlsr-53-arabic-demo" dataset = load_dataset("common_voice", "ar", split="test[:10]") resamplers = { # all three sampling rates exist in test split 48000: torchaudio.transforms.Resample(48000, 16000), 44100: torchaudio.transforms.Resample(44100, 16000), 32000: torchaudio.transforms.Resample(32000, 16000), } def prepare_example(example): speech, sampling_rate = torchaudio.load(example["path"]) example["speech"] = resamplers[sampling_rate](speech).squeeze().numpy() return example dataset = dataset.map(prepare_example) processor = Wav2Vec2Processor.from_pretrained(asr_model) model = Wav2Vec2ForCTC.from_pretrained(asr_model).eval() def predict(batch): inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding=True) with torch.no_grad(): predicted = torch.argmax(model(inputs.input_values).logits, dim=-1) predicted[predicted == -100] = processor.tokenizer.pad_token_id # see fine-tuning script batch["predicted"] = processor.tokenizer.batch_decode(predicted) return batch dataset = dataset.map(predict, batched=True, batch_size=1, remove_columns=["speech"]) for reference, predicted in zip(dataset["sentence"], dataset["predicted"]): print("reference:", reference) print("predicted:", buckwalter.untrans(predicted)) print("--") ``` **Output Results**: ```shell reference: ما أطول عودك! predicted: ما اطول عودك reference: ماتت عمتي منذ سنتين. predicted: ما تتعمتي منذو سنتين reference: الألمانية ليست لغة سهلة. predicted: الالمانية ليست لغة سهلة reference: طلبت منه أن يبعث الكتاب إلينا. predicted: طلبت منه ان يبعث الكتاب الينا reference: .السيد إيتو رجل متعلم predicted: السيد ايتو رجل متعلم reference: الحمد لله. predicted: الحمذ لللا reference: في الوقت نفسه بدأت الرماح والسهام تقع بين الغزاة predicted: في الوقت نفسه ابدات الرماح و السهام تقع بين الغزاء reference: لا أريد أن أكون ثقيلَ الظِّل ، أريد أن أكون رائعًا! ! predicted: لا اريد ان اكون ثقيل الظل اريد ان اكون رائع reference: خذ مظلة معك في حال أمطرت. predicted: خذ مظلة معك في حال امطرت reference: .ركب توم السيارة predicted: ركب توم السيارة ``` The model evaluation **(WER)** on the Arabic test data of Common Voice. ```python import re import torch import torchaudio from datasets import load_dataset, load_metric from transformers import set_seed, Wav2Vec2ForCTC, Wav2Vec2Processor set_seed(42) test_dataset = load_dataset("common_voice", "ar", split="test") processor = Wav2Vec2Processor.from_pretrained("muzamil47/wav2vec2-large-xlsr-53-arabic-demo") model = Wav2Vec2ForCTC.from_pretrained("muzamil47/wav2vec2-large-xlsr-53-arabic-demo") model.to("cuda") chars_to_ignore_regex = '[\,\؟\.\!\-\;\\:\'\"\☭\«\»\؛\—\ـ\_\،\“\%\‘\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() batch["sentence"] = re.sub('[a-z]','',batch["sentence"]) batch["sentence"] = re.sub("[إأٱآا]", "ا", batch["sentence"]) noise = re.compile(""" ّ | # Tashdid َ | # Fatha ً | # Tanwin Fath ُ | # Damma ٌ | # Tanwin Damm ِ | # Kasra ٍ | # Tanwin Kasr ْ | # Sukun ـ # Tatwil/Kashida """, re.VERBOSE) batch["sentence"] = re.sub(noise, '', batch["sentence"]) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) wer = load_metric("wer") print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 53.54 ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found [here](https://huggingface.co/kmfoda/wav2vec2-large-xlsr-arabic/tree/main)