File size: 7,720 Bytes
4437aa5
7d575aa
 
 
 
 
 
4437aa5
 
7d575aa
4437aa5
 
7d575aa
4437aa5
 
 
7d575aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4437aa5
3c336f3
4437aa5
360bf72
 
4437aa5
 
 
360bf72
4437aa5
 
 
 
 
 
efa950c
2777e2e
4437aa5
 
aab561f
4437aa5
 
a6c9537
2bb874a
a6c9537
2bb874a
 
 
a6c9537
4437aa5
a6c9537
 
 
 
 
 
 
 
4437aa5
 
 
2921859
4437aa5
9fc81d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d15734
 
 
 
7d575aa
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- transformers
datasets:
- mwitiderrick/AlpacaCode
base_model: mwitiderrick/open_llama_3b_code_instruct_0.1
inference: true
model_type: llama
prompt_template: "<s>[INST] \n{prompt}\n[/INST]\n"
created_by: mwitiderrick
pipeline_tag: text-generation
model-index:
- name: mwitiderrick/open_llama_3b_instruct_v_0.2
  results:
  - task:
      type: text-generation
    dataset:
      name: hellaswag
      type: hellaswag
    metrics:
    - type: hellaswag (0-Shot)
      value: 0.66
      name: hellaswag(0-Shot)
  - task:
      type: text-generation
    dataset:
      name: winogrande
      type: winogrande
    metrics:
    - type: winogrande (0-Shot)
      value: 0.6322
      name: winogrande(0-Shot)
  - task:
      type: text-generation
    dataset:
      name: arc_challenge
      type: arc_challenge
    metrics:
    - type: arc_challenge (0-Shot)
      value: 0.3447
      name: arc_challenge(0-Shot)
    source:
      url: https://huggingface.co/mwitiderrick/open_llama_3b_instruct_v_0.2
      name: open_llama_3b_instruct_v_0.2 model card
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 40.7
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_glaive_v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 67.45
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_glaive_v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 27.74
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_glaive_v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 35.86
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_glaive_v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.72
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_glaive_v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 1.97
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_glaive_v0.1
      name: Open LLM Leaderboard
---
# OpenLLaMA Glaive: An Open Reproduction of LLaMA

This is an [OpenLlama model Code Instruct](https://huggingface.co/mwitiderrick/open_llama_3b_code_instruct_0.1) that has been fine-tuned on 1 epoch of the
[Glaive Assistsnt](https://huggingface.co/datasets/mwitiderrick/glaive-code-assistant) dataset.

## Prompt Template
```
<s>[INST] {{ user_msg }} [/INST]

```
## Usage 
```python
from transformers import AutoTokenizer, AutoModelForCausalLM,pipeline

tokenizer = AutoTokenizer.from_pretrained("mwitiderrick/open_llama_3b_glaive_code_v0.1")
model = AutoModelForCausalLM.from_pretrained("mwitiderrick/open_llama_3b_glaive_v0.1")
query = "Write a quick sort algorithm in Python"
text_gen = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
output = text_gen(f"<s>[INST]{query}[/INST]")
print(output[0]['generated_text'])
"""
<s>[INST]Write a quick sort algorithm in Python[/INST]

Quick sort is a divide and conquer algorithm that sorts an array in-place.
It works by repeatedly dividing the array into two sub-arrays, sorting
them, and then merging them back together.

Here's a Python implementation of the quick sort algorithm:

def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    else:
        pivot = arr[len(arr) // 2]
        left = [x for x in arr if x < pivot]
        right = [x for x in arr if x > pivot]
        return quick_sort(left) + [pivot] + quick_sort
"""
```
## Metrics
[Detailed metrics](https://huggingface.co/datasets/open-llm-leaderboard/details_mwitiderrick__open_llama_3b_glaive_assistant_v0.1)
```
|  Tasks  |Version|Filter|n-shot| Metric |Value |   |Stderr|
|---------|-------|------|-----:|--------|-----:|---|-----:|
|hellaswag|Yaml   |none  |     0|acc     |0.4974|±  |0.0050|
|         |       |none  |     0|acc_norm|0.6600|±  |0.0047|
|  Groups  |Version|Filter|n-shot|  Metric   | Value  |   |Stderr|
|----------|-------|------|-----:|-----------|-------:|---|-----:|
|truthfulqa|N/A    |none  |     0|bleu_max   | 23.5771|±  |0.5407|
|          |       |none  |     0|bleu_acc   |  0.2754|±  |0.0002|
|          |       |none  |     0|bleu_diff  | -8.1019|±  |0.5137|
|          |       |none  |     0|rouge1_max | 49.5707|±  |0.6501|
|          |       |none  |     0|rouge1_acc |  0.2607|±  |0.0002|
|          |       |none  |     0|rouge1_diff| -9.8962|±  |0.5492|
|          |       |none  |     0|rouge2_max | 33.0399|±  |0.8237|
|          |       |none  |     0|rouge2_acc |  0.2313|±  |0.0002|
|          |       |none  |     0|rouge2_diff|-11.9054|±  |0.7963|
|          |       |none  |     0|rougeL_max | 46.3168|±  |0.6705|
|          |       |none  |     0|rougeL_acc |  0.2521|±  |0.0002|
|          |       |none  |     0|rougeL_diff|-10.1301|±  |0.5669|
|          |       |none  |     0|acc        |  0.3191|±  |0.0405|
|  Tasks   |Version|Filter|n-shot|Metric|Value |   |Stderr|
|----------|-------|------|-----:|------|-----:|---|-----:|
|winogrande|Yaml   |none  |     0|acc   |0.6322|±  |0.0136|
|    Tasks    |Version|Filter|n-shot| Metric |Value |   |Stderr|
|-------------|-------|------|-----:|--------|-----:|---|-----:|
|arc_challenge|Yaml   |none  |     0|acc     |0.3234|±  |0.0137|
|             |       |none  |     0|acc_norm|0.3447|±  |0.0139|
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mwitiderrick__open_llama_3b_glaive_v0.1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |39.74|
|AI2 Reasoning Challenge (25-Shot)|40.70|
|HellaSwag (10-Shot)              |67.45|
|MMLU (5-Shot)                    |27.74|
|TruthfulQA (0-shot)              |35.86|
|Winogrande (5-shot)              |64.72|
|GSM8k (5-shot)                   | 1.97|