File size: 8,380 Bytes
c10432f 19561b0 c10432f 19561b0 c10432f 19561b0 c10432f 19561b0 c10432f 19561b0 c10432f 19561b0 c10432f 3485f67 c10432f ffc45cb c10432f fd4ab10 75630d7 c10432f fd4ab10 c10432f fd4ab10 c10432f 949dbb0 c10432f 39ae128 c10432f 949dbb0 8eb300d 949dbb0 8eb300d 19561b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- transformers
datasets:
- mwitiderrick/OpenPlatypus
base_model: vihangd/shearedplats-2.7b-v2
inference: true
model_type: llama
prompt_template: '### Instruction:\n
{prompt}
### Response:
'
created_by: mwitiderrick
pipeline_tag: text-generation
model-index:
- name: mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
results:
- task:
type: text-generation
dataset:
name: hellaswag
type: hellaswag
metrics:
- type: hellaswag (0-Shot)
value: 0.5283
name: hellaswag(0-Shot)
- task:
type: text-generation
dataset:
name: winogrande
type: winogrande
metrics:
- type: winogrande (0-Shot)
value: 0.6464
name: winogrande(0-Shot)
- task:
type: text-generation
dataset:
name: arc_challenge
type: arc_challenge
metrics:
- type: arc_challenge (0-Shot)
value: 0.3652
name: arc_challenge(0-Shot)
source:
url: https://huggingface.co/mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
name: shearedplats-2.7b-v2-instruct-v0.1 model card
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 40.19
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 70.08
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 28.12
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.23
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.04
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 2.12
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
name: Open LLM Leaderboard
---
# ShearedPlats-7b Instruct
This is an [ShearedPlats-7b model](https://huggingface.co/vihangd/shearedplats-2.7b-v2) that has been fine-tuned on 2 epochs of the
[Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) dataset.
The modified version of the dataset can be found [here](mwitiderrick/Open-Platypus)
## Prompt Template
```
### Instruction:
{query}
### Response:
<Leave new line for model to respond>
```
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM,pipeline
tokenizer = AutoTokenizer.from_pretrained("mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1")
model = AutoModelForCausalLM.from_pretrained("mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1")
query = "Provide step-by-step instructions for making a sweet chicken bugger"
text_gen = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=350)
output = text_gen(f"### Instruction:\n{query}\n### Response:\n")
print(output[0]['generated_text'])
"""
### Instruction:
Provide step-by-step instructions for making a sweet chicken bugger
### Response:
Step 1: Prepare the ingredients
You will need a mixture of ground chicken, breadcrumbs, butter, Worcestershire sauce, garlic powder, onion powder, salt, and pepper.
Step 2: Form the bugger
Take a piece of chicken breast meat and use a sharp knife to cut it into small cubes. Place the cubes in a bowl and add the remaining ingredients: breadcrumbs, butter, Worcestershire sauce, garlic powder, onion powder, salt, and pepper. Mix the ingredients together until they are well combined.
Step 3: Shape the bugger
Take a piece of the bugger mixture and form it into a ball. Place the ball on a plate or in a bag and refrigerate it for 30 minutes.
Step 4: Cook the bugger
Heat a grill pan or grill to medium-high heat. Take the bugger out of the refrigerator and place it on the grill. Cook the bugger for 5-7 minutes on each side, or until it is cooked through.
Step 5: Serve and enjoy!
Once the bugger is cooked, serve it hot and enjoy!
Note: You can also use a sweet chicken bugger mix to make sweet chicken buggers. Simply follow the instructions above, but use the sweet chicken bugger mix instead of the ground chicken.
Enjoy your sweet chicken buggers!
"""
```
## Evals
```
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|---------|-------|------|-----:|--------|-----:|---|-----:|
|hellaswag|Yaml |none | 0|acc |0.5283|± |0.0050|
| | |none | 0|acc_norm|0.7068|± |0.0045|
| Groups |Version|Filter|n-shot| Metric | Value | |Stderr|
|----------|-------|------|-----:|-----------|------:|---|-----:|
|truthfulqa|N/A |none | 0|acc | 0.3411|± |0.0016|
| | |none | 0|bleu_max |19.4174|± |0.6888|
| | |none | 0|bleu_acc | 0.3378|± |0.0166|
| | |none | 0|bleu_diff |-4.4165|± |0.6611|
| | |none | 0|rouge1_max |43.6923|± |0.8239|
| | |none | 0|rouge1_acc | 0.3305|± |0.0165|
| | |none | 0|rouge1_diff|-6.4023|± |0.7680|
| | |none | 0|rouge2_max |28.4074|± |0.8883|
| | |none | 0|rouge2_acc | 0.2827|± |0.0158|
| | |none | 0|rouge2_diff|-6.7716|± |0.8844|
| | |none | 0|rougeL_max |40.2657|± |0.8218|
| | |none | 0|rougeL_acc | 0.3023|± |0.0161|
| | |none | 0|rougeL_diff|-6.5447|± |0.7706|
|----------|-------|------|-----:|------|-----:|---|-----:|
|winogrande|Yaml |none | 0|acc |0.6464|± |0.0134|
|-------------|-------|------|-----:|--------|-----:|---|-----:|
|arc_challenge|Yaml |none | 0|acc |0.3652|± |0.0141|
| | |none | 0|acc_norm|0.3908|± |0.0143|
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mwitiderrick__shearedplats-2.7b-v2-instruct-v0.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |41.13|
|AI2 Reasoning Challenge (25-Shot)|40.19|
|HellaSwag (10-Shot) |70.08|
|MMLU (5-Shot) |28.12|
|TruthfulQA (0-shot) |41.23|
|Winogrande (5-shot) |65.04|
|GSM8k (5-shot) | 2.12|
|