File size: 8,380 Bytes
c10432f
19561b0
 
 
 
 
 
c10432f
 
19561b0
c10432f
 
19561b0
 
c10432f
19561b0
c10432f
19561b0
 
c10432f
 
 
19561b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c10432f
3485f67
c10432f
ffc45cb
c10432f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd4ab10
75630d7
c10432f
 
 
fd4ab10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c10432f
fd4ab10
c10432f
 
949dbb0
c10432f
39ae128
 
 
 
 
c10432f
949dbb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8eb300d
 
949dbb0
8eb300d
 
 
19561b0
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- transformers
datasets:
- mwitiderrick/OpenPlatypus
base_model: vihangd/shearedplats-2.7b-v2
inference: true
model_type: llama
prompt_template: '### Instruction:\n

  {prompt}

  ### Response:

  '
created_by: mwitiderrick
pipeline_tag: text-generation
model-index:
- name: mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
  results:
  - task:
      type: text-generation
    dataset:
      name: hellaswag
      type: hellaswag
    metrics:
    - type: hellaswag (0-Shot)
      value: 0.5283
      name: hellaswag(0-Shot)
  - task:
      type: text-generation
    dataset:
      name: winogrande
      type: winogrande
    metrics:
    - type: winogrande (0-Shot)
      value: 0.6464
      name: winogrande(0-Shot)
  - task:
      type: text-generation
    dataset:
      name: arc_challenge
      type: arc_challenge
    metrics:
    - type: arc_challenge (0-Shot)
      value: 0.3652
      name: arc_challenge(0-Shot)
    source:
      url: https://huggingface.co/mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
      name: shearedplats-2.7b-v2-instruct-v0.1 model card
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 40.19
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 70.08
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 28.12
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 41.23
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 65.04
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 2.12
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
      name: Open LLM Leaderboard
---
# ShearedPlats-7b Instruct

This is an [ShearedPlats-7b model](https://huggingface.co/vihangd/shearedplats-2.7b-v2) that has been fine-tuned on 2 epochs of the
[Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) dataset.

The modified version of the dataset can be found [here](mwitiderrick/Open-Platypus)
## Prompt Template
```
### Instruction:

{query}

### Response:
<Leave new line for model to respond> 
```
## Usage 
```python
from transformers import AutoTokenizer, AutoModelForCausalLM,pipeline

tokenizer = AutoTokenizer.from_pretrained("mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1")
model = AutoModelForCausalLM.from_pretrained("mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1")
query = "Provide step-by-step instructions for making a sweet chicken bugger"
text_gen = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=350)
output = text_gen(f"### Instruction:\n{query}\n### Response:\n")
print(output[0]['generated_text'])
"""
### Instruction:
Provide step-by-step instructions for making a sweet chicken bugger
### Response:
Step 1: Prepare the ingredients

You will need a mixture of ground chicken, breadcrumbs, butter, Worcestershire sauce, garlic powder, onion powder, salt, and pepper.

Step 2: Form the bugger

Take a piece of chicken breast meat and use a sharp knife to cut it into small cubes. Place the cubes in a bowl and add the remaining ingredients: breadcrumbs, butter, Worcestershire sauce, garlic powder, onion powder, salt, and pepper. Mix the ingredients together until they are well combined.

Step 3: Shape the bugger

Take a piece of the bugger mixture and form it into a ball. Place the ball on a plate or in a bag and refrigerate it for 30 minutes.

Step 4: Cook the bugger

Heat a grill pan or grill to medium-high heat. Take the bugger out of the refrigerator and place it on the grill. Cook the bugger for 5-7 minutes on each side, or until it is cooked through.

Step 5: Serve and enjoy!

Once the bugger is cooked, serve it hot and enjoy!

Note: You can also use a sweet chicken bugger mix to make sweet chicken buggers. Simply follow the instructions above, but use the sweet chicken bugger mix instead of the ground chicken.

Enjoy your sweet chicken buggers!
"""
```
## Evals
```
|  Tasks  |Version|Filter|n-shot| Metric |Value |   |Stderr|
|---------|-------|------|-----:|--------|-----:|---|-----:|
|hellaswag|Yaml   |none  |     0|acc     |0.5283|±  |0.0050|
|         |       |none  |     0|acc_norm|0.7068|±  |0.0045|


|  Groups  |Version|Filter|n-shot|  Metric   | Value |   |Stderr|
|----------|-------|------|-----:|-----------|------:|---|-----:|
|truthfulqa|N/A    |none  |     0|acc        | 0.3411|±  |0.0016|
|          |       |none  |     0|bleu_max   |19.4174|±  |0.6888|
|          |       |none  |     0|bleu_acc   | 0.3378|±  |0.0166|
|          |       |none  |     0|bleu_diff  |-4.4165|±  |0.6611|
|          |       |none  |     0|rouge1_max |43.6923|±  |0.8239|
|          |       |none  |     0|rouge1_acc | 0.3305|±  |0.0165|
|          |       |none  |     0|rouge1_diff|-6.4023|±  |0.7680|
|          |       |none  |     0|rouge2_max |28.4074|±  |0.8883|
|          |       |none  |     0|rouge2_acc | 0.2827|±  |0.0158|
|          |       |none  |     0|rouge2_diff|-6.7716|±  |0.8844|
|          |       |none  |     0|rougeL_max |40.2657|±  |0.8218|
|          |       |none  |     0|rougeL_acc | 0.3023|±  |0.0161|
|          |       |none  |     0|rougeL_diff|-6.5447|±  |0.7706|

|----------|-------|------|-----:|------|-----:|---|-----:|
|winogrande|Yaml   |none  |     0|acc   |0.6464|±  |0.0134|

|-------------|-------|------|-----:|--------|-----:|---|-----:|
|arc_challenge|Yaml   |none  |     0|acc     |0.3652|±  |0.0141|
|             |       |none  |     0|acc_norm|0.3908|±  |0.0143|
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mwitiderrick__shearedplats-2.7b-v2-instruct-v0.1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |41.13|
|AI2 Reasoning Challenge (25-Shot)|40.19|
|HellaSwag (10-Shot)              |70.08|
|MMLU (5-Shot)                    |28.12|
|TruthfulQA (0-shot)              |41.23|
|Winogrande (5-shot)              |65.04|
|GSM8k (5-shot)                   | 2.12|