File size: 11,950 Bytes
bd23885 0a452c7 bd23885 0a452c7 1734081 0a452c7 bd23885 0a452c7 bd23885 0a452c7 bd23885 0a452c7 bd23885 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
Extract POS Receipt Image Data To JSON Record
## Model Details
Finetuned Google's PaliGemma Model for Receipt Image extraction to JSON Record.
gradio demo app:
https://github.com/minyang-chen/paligemma-receipt-json-v2
### Model Usage
Setup Environment
```
pip install transformers==4.42.2
pip install datasets
pip install peft accelerate bitsandbytes
```
Specify Device
```
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device_map={"":0}
```
Step-1 Load Image Processor
```
from transformers import AutoProcessor
FINETUNED_MODEL_ID = "mychen76/paligemma-receipt-json-3b-mix-448-v2b"
processor = AutoProcessor.from_pretrained(FINETUNED_MODEL_ID)
```
Step-2 Set Task Prompt
```
TASK_PROMPT = "EXTRACT_JSON_RECEIPT"
MAX_LENGTH = 512
inputs = processor(text=TASK_PROMPT, images=test_image, return_tensors="pt").to(device)
for k,v in inputs.items():
print(k,v.shape)
```
Step-3 load model
```
import torch
from transformers import PaliGemmaForConditionalGeneration
from transformers import BitsAndBytesConfig
from transformers import BitsAndBytesConfig
from peft import get_peft_model, LoraConfig
# Load Full model
model = PaliGemmaForConditionalGeneration.from_pretrained(FINETUNED_MODEL_ID,device_map={"":0})
```
OR Load Quantized
```
# Q-LoRa
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_type=torch.bfloat16
)
lora_config = LoraConfig(
r=8,
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
task_type="CAUSAL_LM"
)
model = PaliGemmaForConditionalGeneration.from_pretrained(FINETUNED_MODEL_ID, quantization_config=bnb_config, device_map={"":0})
```
Step-4 Inference
```
# Autoregressively generate,use greedy decoding here, for more fancy methods see https://huggingface.co/blog/how-to-generate
generated_ids = model.generate(**inputs, max_new_tokens=MAX_LENGTH)
# Next turn each predicted token ID back into a string using the decode method
# chop of the prompt, which consists of image tokens and text prompt
image_token_index = model.config.image_token_index
num_image_tokens = len(generated_ids[generated_ids==image_token_index])
num_text_tokens = len(processor.tokenizer.encode(PROMPT))
num_prompt_tokens = num_image_tokens + num_text_tokens + 2
generated_text = processor.batch_decode(generated_ids[:, num_prompt_tokens:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(generated_text)
```
Result Tokens
```
'<s_total></s_total><s_tips></s_tips><s_time></s_time><s_telephone>(718)308-1118</s_telephone><s_tax></s_tax><s_subtotal></s_subtotal><s_store_name></s_store_name><s_store_addr>Brooklyn,NY11211</s_store_addr><s_line_items><s_item_value>2.98</s_item_value><s_item_quantity>1</s_item_quantity><s_item_name>NORI</s_item_name><s_item_key></s_item_key><sep/><s_item_value>2.35</s_item_value><s_item_quantity>1</s_item_quantity><s_item_name>TOMATOESPLUM</s_item_name><s_item_key></s_item_key><sep/><s_item_value>0.97</s_item_value><s_item_quantity>1</s_item_quantity><s_item_name>ONIONSVIDALIA</s_item_name><s_item_key></s_item_key><sep/><s_item_value>2.48</s_item_value><s_item_quantity>1</s_item_quantity><s_item_name>HAMBURRN</s_item_name><s_item_key></s_item_key><sep/><s_item_value>0.99</s_item_value><s_item_quantity>1</s_item_quantity><s_item_name>FTRAWBERRY</s_item_name><s_item_key></s_item_key><sep/><s_item_value>0.99</s_item_value><s_item_quantity>1</s_item_quantity><s_item_name>FTRAWBERRY</s_item_name><s_item_key></s_item_key><sep/><s_item_value>0.57</s_item_value><s_item_quantity>1</s_item_quantity><s_item_name>PILSNER</'
```
Step-5 Convert Result to Json (borrow from donut model)
```
import re
# let's turn that into JSON
def token2json(tokens, is_inner_value=False, added_vocab=None):
"""
Convert a (generated) token sequence into an ordered JSON format.
"""
if added_vocab is None:
added_vocab = processor.tokenizer.get_added_vocab()
output = {}
while tokens:
start_token = re.search(r"<s_(.*?)>", tokens, re.IGNORECASE)
if start_token is None:
break
key = start_token.group(1)
key_escaped = re.escape(key)
end_token = re.search(rf"</s_{key_escaped}>", tokens, re.IGNORECASE)
start_token = start_token.group()
if end_token is None:
tokens = tokens.replace(start_token, "")
else:
end_token = end_token.group()
start_token_escaped = re.escape(start_token)
end_token_escaped = re.escape(end_token)
content = re.search(
f"{start_token_escaped}(.*?){end_token_escaped}", tokens, re.IGNORECASE | re.DOTALL
)
if content is not None:
content = content.group(1).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
value = token2json(content, is_inner_value=True, added_vocab=added_vocab)
if value:
if len(value) == 1:
value = value[0]
output[key] = value
else: # leaf nodes
output[key] = []
for leaf in content.split(r"<sep/>"):
leaf = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
leaf = leaf[1:-2] # for categorical special tokens
output[key].append(leaf)
if len(output[key]) == 1:
output[key] = output[key][0]
tokens = tokens[tokens.find(end_token) + len(end_token) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + token2json(tokens[6:], is_inner_value=True, added_vocab=added_vocab)
if len(output):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
## generated
generated_json = token2json(generated_text)
print(generated_json)
```
Final Result in Json
```
[{'total': '',
'tips': '',
'time': '',
'telephone': '(718)308-1118',
'tax': '',
'subtotal': '',
'store_name': '',
'store_addr': 'Brooklyn,NY11211',
'item_value': '2.98',
'item_quantity': '1',
'item_name': 'NORI',
'item_key': ''},
{'item_value': '2.35',
'item_quantity': '1',
'item_name': 'TOMATOESPLUM',
'item_key': ''},
{'item_value': '0.97',
'item_quantity': '1',
'item_name': 'ONIONSVIDALIA',
'item_key': ''},
{'item_value': '2.48',
'item_quantity': '1',
'item_name': 'HAMBURRN',
'item_key': ''},
{'item_value': '0.99',
'item_quantity': '1',
'item_name': 'FTRAWBERRY',
'item_key': ''},
{'item_value': '0.99',
'item_quantity': '1',
'item_name': 'FTRAWBERRY',
'item_key': ''},
{'item_value': '0.57', 'item_quantity': '1'}]
```
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [email protected]
- **Model type:** Vision Model for Receipt Image Data Extraction
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** PaliGemma-3b-pt-224
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
see here: mychen76/invoices-and-receipts_ocr_v1
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |