{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7f1f39e5c0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682721516407330333, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL3Fyb21haWtvL21hbWJhZm9yZ2UvZW52cy9weXRvcmNoX3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9xcm9tYWlrby9tYW1iYWZvcmdlL2VudnMvcHl0b3JjaF9ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAElBMj5Nqa8/h74NP2fY1D8Y/aK/ei8NPz9ZDD8pJlC/OlZQP0Vad77oQgU/dm83wHe3nr+lFoA/1BjFPsyWtz+Bxzm/URsBQGtahT/Zshe/pXpEv1NNRT4Uc5I9NlJsP5s19z4I/qw+7KcKwIw2DT+bhsg8BZObPjHLGj+x6CG/JIoHv07KrL/0eq4+/pUOvqhrQD+wGU4+nNaMPnQwRr5Roci+j6rLv2zPlz6AfRpADywfP6A9FMDp0sk+SL8RwMj0qj18K4Y/Vjvvvn3gRb+bNfc+CP6sPuynCsDmC+i/ssIdP/rTwj4PHR4/RtbzP7X2kr4iBmA/sAGGP4QNfr+jXlM/mHkvvXGDoD+1cJc+bJyev7PsRcBiq5m+Bixavzxfpz7sCtS/Qx1yP7P2Uj7PVxe/TjQyPwr6S7+4L1g+mzX3Pgj+rD5yU+w+5gvovyEPST9vdDq/OfgCPsbOJUCnOBLAKBhWP4VGNj8Z57G/InRIPxWmtr2a5/c+fPgTwEzwbr9Cw7c/Hc4vPr2TAUD5Wwq+5g6vP+XRjT8RbAG9PK50vmFyBMCLfWc/EdBxPzWNBMAI/qw+7KcKwIw2DT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAMcLe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8XL1PQAAAAAxeOO/AAAAAD4KDL4AAAAAVurePwAAAACX/3q9AAAAAGE1+T8AAAAAtjOWvQAAAAAZe/K/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASUuTtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNIuBD4AAAAAW0juvwAAAABzgQ2+AAAAAG2l3j8AAAAAeG08vQAAAADr9OE/AAAAAAIi8L0AAAAAtmblvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAPijUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB9pk66AAAAAMcq3b8AAAAALeQnPQAAAABJfv0/AAAAALf8eLwAAAAAiC/lPwAAAABWK368AAAAAJ7Q5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYRAk1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA624JPgAAAAAV0+y/AAAAAKX+oD0AAAAAJEjaPwAAAABDnJq8AAAAACTm3D8AAAAAXl28vQAAAACyNd2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJVr3VhCtzWMAWyUTegDjAF0lEdAnzUxdMTN+3V9lChoBkdAlTqmZNO/L2gHTegDaAhHQJ827v8ZUDN1fZQoaAZHQJh3E53kgfVoB03oA2gIR0CfPCrsSkCWdX2UKGgGR0CYhb7qY7aJaAdN6ANoCEdAnz8kyLyc1HV9lChoBkdAmVE80k4WDmgHTegDaAhHQJ9E+uIRAbB1fZQoaAZHQJq08QRPGhpoB03oA2gIR0CfRoHuqm0mdX2UKGgGR0CYWWJ/oaDPaAdN6ANoCEdAn0vCeAd4mnV9lChoBkdAmtOYGIKtxWgHTegDaAhHQJ9OyMYMvyt1fZQoaAZHQJpsLGLk0aZoB03oA2gIR0CfVLc3l0YCdX2UKGgGR0CaMH/OdGy5aAdN6ANoCEdAn1ZFP8AJcHV9lChoBkdAjpKH/1g6VGgHTegDaAhHQJ9bkPxx1gZ1fZQoaAZHQJqmme4Cp3poB03oA2gIR0CfXomdRR/FdX2UKGgGR0CZMMdvsJIEaAdN6ANoCEdAn2RowRGtp3V9lChoBkdAiBvha1TisGgHTegDaAhHQJ9l+0iQkop1fZQoaAZHQJk4iPmxMWZoB03oA2gIR0Cfaza4+bExdX2UKGgGR0CX1uzLOiWWaAdN6ANoCEdAn242Ij4YanV9lChoBkdAmM4XR9gF5mgHTegDaAhHQJ90MvK2a2F1fZQoaAZHQJgZgUUO/cpoB03oA2gIR0CfdcFZPl+3dX2UKGgGR0CXmJLU1AJLaAdN6ANoCEdAn3r9dE9dNXV9lChoBkdAmJ72BvrGBGgHTegDaAhHQJ99/BCUorp1fZQoaAZHQJYhrZkCmuVoB03oA2gIR0Cfg+d6LOzIdX2UKGgGR0CXIHMPSUkfaAdN6ANoCEdAn4V3w9aEBnV9lChoBkdAmJ5vqX4TK2gHTegDaAhHQJ+KvmxMWXV1fZQoaAZHQJeO/Bhx5s1oB03oA2gIR0Cfjb/XXiBHdX2UKGgGR0CYlzTewcHXaAdN6ANoCEdAn5O85wOvuHV9lChoBkdAmYBJaiblR2gHTegDaAhHQJ+VSGKyfL91fZQoaAZHQJgsqBVdX1doB03oA2gIR0CfmpS13MY/dX2UKGgGR0CZ5UL6UJOWaAdN6ANoCEdAn52bNGEwnHV9lChoBkdAhS7g08/2TWgHTegDaAhHQJ+jovrWy1N1fZQoaAZHQHlyopYs/Y9oB03oA2gIR0CfpTo2XLNfdX2UKGgGR0CbqksUIsy0aAdN6ANoCEdAn6p9d/rjYXV9lChoBkdAm7N5L7Gec2gHTegDaAhHQJ+tfaGpMpR1fZQoaAZHQJrj9LpRoAZoB03oA2gIR0Cfs3Z62OQydX2UKGgGR0CR2eBciW3SaAdN6ANoCEdAn7UFU+9rXXV9lChoBkdAl7o2qtHQQmgHTegDaAhHQJ+6Rnh86WB1fZQoaAZHQJiqXzg/C69oB03oA2gIR0CfvUfv4M4MdX2UKGgGR0CaBfi5uqFRaAdN6ANoCEdAn8M3LaEi+3V9lChoBkdAmKSkWhysCGgHTegDaAhHQJ/EwyRB/qh1fZQoaAZHQJXSjTVlPJtoB03oA2gIR0CfygO1fE4vdX2UKGgGR0CS44ZF5OafaAdN6ANoCEdAn80M3VCoj3V9lChoBkdAlwHtUwSJ0mgHTegDaAhHQJ/S7oB7u2J1fZQoaAZHQJUpe5CngpBoB03oA2gIR0Cf1J50r9VFdX2UKGgGR0CXRdgEU0vXaAdN6ANoCEdAn9ne+7Dl5nV9lChoBkdAmBT8+JP69GgHTegDaAhHQJ/c4s/Y8Md1fZQoaAZHQJe6yyHEdeZoB03oA2gIR0Cf4sdzXBgvdX2UKGgGR0CaC/MhX8wYaAdN6ANoCEdAn+RYsqaw2XV9lChoBkdAlMIpxm03O2gHTegDaAhHQJ/ppy7wrlN1fZQoaAZHQJhZHKq4pc5oB03oA2gIR0Cf7KUExIrfdX2UKGgGR0CXBy9Ba9saaAdN6ANoCEdAn/Ksk+otMHV9lChoBkdAmVBaz3RG+mgHTegDaAhHQJ/0XLEDQqt1fZQoaAZHQJuE6zTnaFpoB03oA2gIR0Cf+mcebNKRdX2UKGgGR0CXfQRAbADaaAdN6ANoCEdAn/42hqTKT3V9lChoBkdAmPqM5GSZB2gHTegDaAhHQKACHk1/DtR1fZQoaAZHQJnnoRwqAjJoB03oA2gIR0CgAuohyKekdX2UKGgGR0CbYBIczZYgaAdN6ANoCEdAoAYHkBCD3HV9lChoBkdAmrmDXvphW2gHTegDaAhHQKAHlI6Kcd51fZQoaAZHQJGt3lOoHcFoB03oA2gIR0CgCqdV/+bWdX2UKGgGR0CZJKVe8f3faAdN6ANoCEdAoAucAmzBynV9lChoBkdAjreAmqo60mgHTegDaAhHQKAOfvlU6xR1fZQoaAZHQJYmxTo+wC9oB03oA2gIR0CgD/bd8Aq/dX2UKGgGR0CY2VpKBd2QaAdN6ANoCEdAoBMQ//vOQnV9lChoBkdAlvwhXOnl4mgHTegDaAhHQKAT5W1+iJx1fZQoaAZHQJi3PV6NVBFoB03oA2gIR0CgFrfT1CgLdX2UKGgGR0CStDYBvJiiaAdN6ANoCEdAoBgwZOzpo3V9lChoBkdAl06p/kNnXmgHTegDaAhHQKAbaOVgQYl1fZQoaAZHQJaS4pLEk0JoB03oA2gIR0CgHFavzOHGdX2UKGgGR0CWIG7gsK9gaAdN6ANoCEdAoB9bt9hJAnV9lChoBkdAlfOCP2f03GgHTegDaAhHQKAhQHu7YkF1fZQoaAZHQJjYkzhxYJVoB03oA2gIR0CgJGIyKvV3dX2UKGgGR0CX0TVuaWonaAdN6ANoCEdAoCU1xAB1cXV9lChoBkdAlyDMdLg4wWgHTegDaAhHQKAoMSQHRkV1fZQoaAZHQJlmHWBjFydoB03oA2gIR0CgKejuKGcndX2UKGgGR0CYlZgHNX5naAdN6ANoCEdAoC0cSM98qnV9lChoBkdAl/yQyRB/qmgHTegDaAhHQKAt4drftQd1fZQoaAZHQJgwPpu/DcdoB03oA2gIR0CgMRbg88s+dX2UKGgGR0CaLkY1pCa7aAdN6ANoCEdAoDLRaRp1zXV9lChoBkdAmP5U8JUo8mgHTegDaAhHQKA2FE5Qxet1fZQoaAZHQJXAP2FnIyVoB03oA2gIR0CgNuoNEw36dX2UKGgGR0CZ1+3XqZ+haAdN6ANoCEdAoDnY8W9DhXV9lChoBkdAmoi3NxEORWgHTegDaAhHQKA7YhakhzN1fZQoaAZHQJq54Qz1schoB03oA2gIR0CgPp79qDbrdX2UKGgGR0B7i55kbxViaAdN6ANoCEdAoD92tr9ETnV9lChoBkdAmNWBT4tYjmgHTegDaAhHQKBCkB/7SAp1fZQoaAZHQJn0qcWj459oB03oA2gIR0CgRDweeWfLdX2UKGgGR0Carg+Sr5qNaAdN6ANoCEdAoEcSYLLIP3V9lChoBkdAk6hxBAv+O2gHTegDaAhHQKBH1Qm/nGN1fZQoaAZHQJl6rJU5uIhoB03oA2gIR0CgSnRFqi48dX2UKGgGR0CSm33hGYrsaAdN6ANoCEdAoEvtT1kDp3V9lChoBkdAlx2OIMz/ImgHTegDaAhHQKBO4GgSOBF1fZQoaAZHQJYG75aePJdoB03oA2gIR0CgT6OPvKEGdX2UKGgGR0CXjHFN+LFXaAdN6ANoCEdAoFJDBO58SnV9lChoBkdAl81FEd/8VGgHTegDaAhHQKBTuQ7LdN51fZQoaAZHQJmwO5BkZrJoB03oA2gIR0CgVpqRdQfqdX2UKGgGR0CYy7gOz6acaAdN6ANoCEdAoFdZw0fozXV9lChoBkdAlsc6RuCPIWgHTegDaAhHQKBZ9FdcB2h1fZQoaAZHQJRHItDlYEJoB03oA2gIR0CgW28RL9MsdX2UKGgGR0CY6EoRqXWwaAdN6ANoCEdAoF5Tg62fCnV9lChoBkdAmTRHGjsUqWgHTegDaAhHQKBfIfywwCd1fZQoaAZHQJdKBubZvk1oB03oA2gIR0CgYbI3irDJdX2UKGgGR0CamRvHtF8YaAdN6ANoCEdAoGM1qagElnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}