--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: openlm-research/open_llama_3b_v2 model-index: - name: qlora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: openlm-research/open_llama_3b_v2 model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: true strict: false push_dataset_to_hub: datasets: - path: mhenrichsen/alpaca_2k_test type: alpaca dataset_prepared_path: val_set_size: 0.05 adapter: qlora lora_model_dir: sequence_len: 1024 sample_packing: true lora_r: 8 lora_alpha: 32 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: output_dir: ./qlora-out gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 4 optimizer: paged_adamw_32bit torchdistx_path: lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: false fp16: true tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true gptq_groupsize: gptq_model_v1: warmup_steps: 20 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# qlora-out This model is a fine-tuned version of [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3026 | 0.01 | 1 | 1.3435 | | 1.1146 | 0.25 | 50 | 1.1476 | | 1.2387 | 0.5 | 100 | 1.1319 | | 1.4159 | 0.75 | 150 | 1.1192 | | 1.2807 | 1.01 | 200 | 1.1153 | | 1.0465 | 1.24 | 250 | 1.1569 | | 0.9577 | 1.49 | 300 | 1.1493 | | 1.1257 | 1.74 | 350 | 1.1462 | | 0.9404 | 1.99 | 400 | 1.1520 | | 0.7161 | 2.22 | 450 | 1.2603 | | 0.5897 | 2.47 | 500 | 1.2661 | | 0.5271 | 2.72 | 550 | 1.2814 | | 0.6239 | 2.97 | 600 | 1.2705 | | 0.3486 | 3.21 | 650 | 1.3848 | | 0.5591 | 3.46 | 700 | 1.4171 | | 0.3804 | 3.71 | 750 | 1.4177 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.2+cu118 - Datasets 2.18.0 - Tokenizers 0.15.0