File size: 5,769 Bytes
0dabde8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import torch
import torch.nn.functional as F
import librosa
import sounddevice as sd
from transformers import WavLMModel
from scipy.io.wavfile import write
from models import SynthesizerTrn
from speaker_encoder.voice_encoder import SpeakerEncoder
import utils
import numpy as np
from transformers import T5Tokenizer, T5EncoderModel
from src.plugin_wrapper import DreamVG


# Load configurations and models
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print("Loading FreeVC...")
hps = utils.get_hparams_from_file("configs/freevc.json")
freevc = SynthesizerTrn(
    hps.data.filter_length // 2 + 1,
    hps.train.segment_size // hps.data.hop_length,
    **hps.model).to(device)
freevc.eval()
utils.load_checkpoint("checkpoints/freevc.pth", freevc, None)

print("Loading Speaker Encoder...")
smodel = SpeakerEncoder('speaker_encoder/ckpt/pretrained_bak_5805000.pt')

print("Loading WavLM for content...")
cmodel = WavLMModel.from_pretrained("microsoft/wavlm-large").to(device)

lm_path = 'google/flan-t5-base'
tokenizer = T5Tokenizer.from_pretrained(lm_path)
text_encoder = T5EncoderModel.from_pretrained(lm_path).to(device).eval()

dreamvg = DreamVG(config_path='src/configs/plugin_cross.yaml',
                  ckpt_path='checkpoints/dreamvc_plugin.pt',
                  device=device)


# Constants for overlap-add
CHUNK_SIZE = 47040
OVERLAP = 960
BUFFER_SIZE = OVERLAP + CHUNK_SIZE
fade_size = OVERLAP
HANN_WINDOW = np.ones(BUFFER_SIZE)
HANN_WINDOW[:fade_size] = 0.5 * (1 - np.cos(np.pi * np.arange(fade_size) / fade_size))
HANN_WINDOW[-fade_size:] = 0.5 * (1 - np.cos(np.pi * np.arange(fade_size) / fade_size))[::-1]

# Initialize buffers
input_buffer = np.zeros(BUFFER_SIZE, dtype=np.float32)
output_buffer = np.zeros(BUFFER_SIZE, dtype=np.float32)


@torch.no_grad()
def convert_realtime_with_buffers(audio_chunk, tgt_embedding, freevc, cmodel):
    """Process audio in chunks with overlap and manage input/output buffers."""
    global input_buffer, output_buffer, HANN_WINDOW, BUFFER_SIZE, CHUNK_SIZE

    # Add incoming audio chunk to input buffer
    input_buffer[:OVERLAP] = input_buffer[-OVERLAP:]
    input_buffer[OVERLAP:] = audio_chunk

    # Downsample to 16,000 Hz
    chunk = input_buffer
    chunk = librosa.resample(chunk, orig_sr=48000, target_sr=16000)

    # Convert to tensor and pad
    chunk_tensor = torch.from_numpy(chunk).unsqueeze(0).to(device).float()
    chunk_tensor = F.pad(chunk_tensor, (40, 40))

    # Extract content features using WavLM
    c = cmodel(chunk_tensor).last_hidden_state.transpose(1, 2).to(device)

    # Generate converted audio using FreeVC
    audio = freevc.infer(c, g=tgt_embedding)
    audio = audio[0][0].data.cpu().float().numpy()

    # Upsample back to 48,000 Hz
    audio = librosa.resample(audio, orig_sr=16000, target_sr=48000)

    # Apply Hann window to the output
    windowed_output = audio * HANN_WINDOW

    # Add the new processed audio to the output buffer with overlap
    output_buffer[:OVERLAP] = output_buffer[-OVERLAP:]
    output_buffer[OVERLAP:] = 0
    output_buffer += windowed_output

    normalization_factors = np.zeros(BUFFER_SIZE)
    normalization_factors[:OVERLAP] += HANN_WINDOW[-OVERLAP:]
    normalization_factors += HANN_WINDOW
    normalization_factors = np.clip(normalization_factors, 1e-6, None)
    # output_buffer[:CHUNK_SIZE] = output_buffer[:CHUNK_SIZE] / normalization_factors[:CHUNK_SIZE]

    return output_buffer[:CHUNK_SIZE]


def prepare_target_embedding(tgt_audio_path):
    """Preprocess target audio and get speaker embedding."""
    wav_tgt, _ = librosa.load(tgt_audio_path, sr=16000)
    wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
    g_tgt = smodel.embed_utterance(wav_tgt)
    g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(device)
    return g_tgt


# Prepare the target speaker embedding
# target_audio = "p225_001.wav"  # Target speaker audio
# target_embedding = prepare_target_embedding(target_audio)
prompt = "A young girl voice, very cute"
prompt_guidance_scale = 3.0

text_batch = tokenizer(prompt, max_length=32,
                       padding='max_length', truncation=True, return_tensors="pt")
text, text_mask = text_batch.input_ids.to(device), \
    text_batch.attention_mask.to(device)
text = text_encoder(input_ids=text, attention_mask=text_mask)[0]
target_embedding = dreamvg.inference([text, text_mask],
                                     guidance_scale=prompt_guidance_scale,
                                     guidance_rescale=0.0,
                                     ddim_steps=100, eta=1,
                                     random_seed=None)

# Stream settings
SAMPLING_RATE = 48000
INPUT_DEVICE = 69
OUTPUT_DEVICE = 58


def audio_callback(indata, outdata, frames, time, status):
    """Callback function for real-time audio processing with input and output buffers."""
    global input_buffer, output_buffer

    if status:
        print(f"Status: {status}")
    # Reshape and process input audio
    indata = indata[:, 0]  # Mono input
    converted_audio = convert_realtime_with_buffers(indata, target_embedding, freevc, cmodel)
    # Write the converted audio to the output stream
    outdata[:] = converted_audio.reshape(-1, 1)


# Start the audio stream with the updated callback
with sd.Stream(
        samplerate=SAMPLING_RATE,
        blocksize=CHUNK_SIZE,
        channels=1,
        dtype='float32',
        latency='low',
        device=(INPUT_DEVICE, OUTPUT_DEVICE),
        callback=audio_callback):
    try:
        sd.sleep(1000000)
    except KeyboardInterrupt:
        print("Voice conversion stopped.")