File size: 16,717 Bytes
0a97d6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
import argparse
import logging
from pathlib import Path
import torch
import torch.cuda.amp as amp
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
from hubert.model import Hubert, URLS
from hubert.dataset import AcousticUnitsDataset
from hubert.utils import Metric, save_checkpoint, load_checkpoint
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
########################################################################################
# Define hyperparameters for training:
########################################################################################
BATCH_SIZE = 32
LEARNING_RATE = 2e-5
BETAS = (0.9, 0.98)
EPS = 1e-06
WEIGHT_DECAY = 1e-2
MAX_NORM = 10
STEPS = 25000
LOG_INTERVAL = 5
VALIDATION_INTERVAL = 1000
CHECKPOINT_INTERVAL = 5000
BACKEND = "nccl"
INIT_METHOD = "tcp://localhost:54321"
def train(rank, world_size, args):
dist.init_process_group(
BACKEND,
rank=rank,
world_size=world_size,
init_method=INIT_METHOD,
)
####################################################################################
# Setup logging utilities:
####################################################################################
log_dir = args.checkpoint_dir / "logs"
log_dir.mkdir(exist_ok=True, parents=True)
if rank == 0:
logger.setLevel(logging.INFO)
handler = logging.FileHandler(log_dir / f"{args.checkpoint_dir.stem}.log")
handler.setLevel(logging.INFO)
formatter = logging.Formatter(
"%(asctime)s [%(levelname)s] %(message)s", datefmt="%m/%d/%Y %I:%M:%S"
)
handler.setFormatter(formatter)
logger.addHandler(handler)
else:
logger.setLevel(logging.ERROR)
writer = SummaryWriter(log_dir) if rank == 0 else None
####################################################################################
# Initialize models
####################################################################################
hubert = Hubert(mask=args.mask).to(rank)
if args.warmstart:
checkpoint = torch.hub.load_state_dict_from_url(
URLS["hubert-discrete"], map_location={"cuda:0": f"cuda:{rank}"}
)
consume_prefix_in_state_dict_if_present(checkpoint["hubert"], "module.")
# don't use warmstart weights for label embeddings and proj layer
del checkpoint["hubert"]["label_embedding.weight"]
del checkpoint["hubert"]["proj.weight"]
del checkpoint["hubert"]["proj.bias"]
hubert.load_state_dict(checkpoint["hubert"], strict=False)
hubert = DDP(hubert, device_ids=[rank])
####################################################################################
# Initialze optimizer and grad scaler
####################################################################################
optimizer = optim.AdamW(
hubert.parameters(),
lr=LEARNING_RATE,
betas=BETAS,
eps=EPS,
weight_decay=WEIGHT_DECAY,
)
scaler = amp.GradScaler()
####################################################################################
# Initialize datasets and dataloaders
####################################################################################
train_dataset = AcousticUnitsDataset(
root=args.dataset_dir,
train=True,
)
train_sampler = DistributedSampler(train_dataset, drop_last=True)
train_loader = DataLoader(
train_dataset,
collate_fn=train_dataset.collate,
batch_size=BATCH_SIZE,
sampler=train_sampler,
num_workers=8,
pin_memory=True,
shuffle=False,
drop_last=True,
)
validation_dataset = AcousticUnitsDataset(
root=args.dataset_dir,
train=False,
)
validation_loader = DataLoader(
validation_dataset,
batch_size=1,
shuffle=False,
num_workers=8,
pin_memory=True,
)
####################################################################################
# Load checkpoint if args.resume is set
####################################################################################
if args.resume is not None:
global_step, best_loss = load_checkpoint(
load_path=args.resume,
hubert=hubert,
optimizer=optimizer,
scaler=scaler,
rank=rank,
logger=logger,
)
else:
global_step, best_loss = 0, float("inf")
# =================================================================================#
# Start training loop
# =================================================================================#
n_epochs = STEPS // len(train_loader) + 1
start_epoch = global_step // len(train_loader) + 1
logger.info("**" * 40)
logger.info(f"PyTorch version: {torch.__version__}")
logger.info(f"CUDA version: {torch.version.cuda}")
logger.info(f"CUDNN version: {torch.backends.cudnn.version()}")
logger.info(f"CUDNN enabled: {torch.backends.cudnn.enabled}")
logger.info(f"CUDNN deterministic: {torch.backends.cudnn.deterministic}")
logger.info(f"CUDNN benchmark: {torch.backends.cudnn.benchmark}")
logger.info(f"# of GPUS: {torch.cuda.device_count()}")
logger.info(f"batch size: {BATCH_SIZE}")
logger.info(f"iterations per epoch: {len(train_loader)}")
logger.info(f"# of epochs: {n_epochs}")
logger.info(f"started at epoch: {start_epoch}")
logger.info("**" * 40 + "\n")
if args.mask:
average_masked_loss = Metric()
average_unmasked_loss = Metric()
average_masked_accuracy = Metric()
average_unmasked_accuracy = Metric()
epoch_masked_loss = Metric()
epoch_unmasked_loss = Metric()
epoch_masked_accuracy = Metric()
epoch_unmasked_accuracy = Metric()
else:
average_loss = Metric()
average_accuracy = Metric()
epoch_loss = Metric()
epoch_accuracy = Metric()
validation_loss = Metric()
validation_accuracy = Metric()
for epoch in range(start_epoch, n_epochs + 1):
train_sampler.set_epoch(epoch)
hubert.train()
if args.mask:
epoch_masked_loss.reset()
epoch_unmasked_loss.reset()
epoch_masked_accuracy.reset()
epoch_unmasked_accuracy.reset()
else:
epoch_loss.reset()
epoch_accuracy.reset()
for wavs, codes in train_loader:
global_step += 1
wavs, codes = wavs.to(rank), codes.to(rank)
############################################################################
# Compute training loss
############################################################################
optimizer.zero_grad()
with amp.autocast():
logits, mask = hubert(wavs)
length = min(
mask.size(-1) if args.mask else float("inf"), codes.size(-1)
)
logits = logits[:, :length, :]
codes = codes[:, :length]
if args.mask:
mask = mask[:, :length]
if args.mask:
masked_loss = F.cross_entropy(logits[mask], codes[mask])
unmasked_loss = F.cross_entropy(logits[~mask], codes[~mask])
loss = args.alpha * masked_loss + (1 - args.alpha) * unmasked_loss
else:
loss = F.cross_entropy(logits.transpose(1, 2), codes)
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
nn.utils.clip_grad_norm_(hubert.parameters(), MAX_NORM)
scaler.step(optimizer)
scaler.update()
if args.mask:
masked_accuracy = logits[mask].argmax(dim=-1) == codes[mask]
masked_accuracy = torch.mean(masked_accuracy.float())
unmasked_accuracy = logits[~mask].argmax(dim=-1) == codes[~mask]
unmasked_accuracy = torch.mean(unmasked_accuracy.float())
else:
accuracy = logits.argmax(dim=-1) == codes
accuracy = torch.mean(accuracy.float())
############################################################################
# Update and log training metrics
############################################################################
if args.mask:
average_masked_loss.update(masked_loss.item())
average_unmasked_loss.update(unmasked_loss.item())
average_masked_accuracy.update(masked_accuracy.item())
average_unmasked_accuracy.update(unmasked_accuracy.item())
epoch_masked_loss.update(masked_loss.item())
epoch_unmasked_loss.update(unmasked_loss.item())
epoch_masked_accuracy.update(masked_accuracy.item())
epoch_unmasked_accuracy.update(unmasked_accuracy.item())
else:
average_loss.update(loss.item())
average_accuracy.update(accuracy.item())
epoch_loss.update(loss.item())
epoch_accuracy.update(accuracy.item())
if rank == 0 and global_step % LOG_INTERVAL == 0:
if args.mask:
writer.add_scalar(
"train/masked_loss",
average_masked_loss.value,
global_step,
)
writer.add_scalar(
"train/unmasked_loss",
average_unmasked_loss.value,
global_step,
)
writer.add_scalar(
"train/masked_accuracy",
average_masked_accuracy.value * 100,
global_step,
)
writer.add_scalar(
"train/unmasked_accuracy",
average_unmasked_accuracy.value * 100,
global_step,
)
average_masked_loss.reset()
average_unmasked_loss.reset()
average_masked_accuracy.reset()
average_unmasked_accuracy.reset()
else:
writer.add_scalar(
"train/loss",
average_loss.value,
global_step,
)
writer.add_scalar(
"train/accuracy",
average_accuracy.value,
global_step,
)
average_loss.reset()
average_accuracy.reset()
# --------------------------------------------------------------------------#
# Start validation loop
# --------------------------------------------------------------------------#
if global_step % VALIDATION_INTERVAL == 0:
hubert.eval()
validation_loss.reset()
validation_accuracy.reset()
for wavs, codes in validation_loader:
wavs, codes = wavs.to(rank), codes.to(rank)
with torch.no_grad():
logits, _ = hubert(wavs)
logits = logits.transpose(1, 2)
loss = F.cross_entropy(logits, codes)
accuracy = logits.argmax(dim=1) == codes
accuracy = torch.mean(accuracy.float())
####################################################################
# Update validation metrics
####################################################################
validation_loss.update(loss.item())
validation_accuracy.update(accuracy.item())
hubert.train()
############################################################################
# Log validation metrics
############################################################################
if rank == 0:
writer.add_scalar(
"validation/unit_loss",
validation_loss.value,
global_step,
)
writer.add_scalar(
"validation/unit_accuracy",
validation_accuracy.value * 100,
global_step,
)
logger.info(
f"valid -- epoch: {epoch}, loss: {validation_loss.value:.4f}, accuracy: {validation_accuracy.value * 100:.2f}"
)
############################################################################
# Save model checkpoint
############################################################################
new_best = best_loss > validation_loss.value
if new_best or global_step % CHECKPOINT_INTERVAL == 0:
if new_best:
logger.info("-------- new best model found!")
best_loss = validation_loss.value
if rank == 0:
save_checkpoint(
checkpoint_dir=args.checkpoint_dir,
hubert=hubert,
optimizer=optimizer,
scaler=scaler,
step=global_step,
loss=validation_loss.value,
best=new_best,
logger=logger,
)
# -----------------------------------------------------------------------------#
# End validation loop
# -----------------------------------------------------------------------------#
####################################################################################
# Log training metrics
####################################################################################
logger.info(
f"""
train -- epoch: {epoch}, masked loss: {epoch_masked_loss.value:.4f}, unmasked loss: {epoch_unmasked_loss.value:.4f},
masked accuracy: {epoch_masked_accuracy.value * 100:.2f}, umasked accuracy: {epoch_unmasked_accuracy.value * 100:.2f}
"""
)
# ==================================================================================#
# End training loop
# ==================================================================================#
dist.destroy_process_group()
def train_hubert(args):
world_size = torch.cuda.device_count()
mp.spawn(
train,
args=(world_size, args),
nprocs=world_size,
join=True,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train HuBERT soft content encoder.")
parser.add_argument(
"dataset_dir",
metavar="dataset-dir",
help="path to the data directory.",
type=Path,
)
parser.add_argument(
"checkpoint_dir",
metavar="checkpoint-dir",
help="path to the checkpoint directory.",
type=Path,
)
parser.add_argument(
"--resume",
help="path to the checkpoint to resume from.",
type=Path,
)
parser.add_argument(
"--warmstart",
help="whether to initialize from the fairseq HuBERT checkpoint.",
action="store_true",
)
parser.add_argument(
"--mask",
help="whether to use input masking.",
action="store_true",
)
parser.add_argument(
"--alpha",
help="weight for the masked loss.",
default=1,
type=float,
)
args = parser.parse_args()
world_size = torch.cuda.device_count()
mp.spawn(
train,
args=(world_size, args),
nprocs=world_size,
join=True,
)
|