File size: 9,745 Bytes
bd3a23c 0dabde8 bd3a23c 0dabde8 bd3a23c 0dabde8 bd3a23c 0dabde8 bd3a23c 0dabde8 bd3a23c 0dabde8 bd3a23c 0dabde8 bd3a23c 0dabde8 bd3a23c 0dabde8 bd3a23c 0dabde8 bd3a23c 0dabde8 bd3a23c 0dabde8 bd3a23c 0dabde8 bd3a23c 0dabde8 bd3a23c 0dabde8 bd3a23c 0dabde8 bd3a23c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import yaml
import random
import argparse
import os
import time
from tqdm import tqdm
from pathlib import Path
import torch
from torch.utils.data import DataLoader
from accelerate import Accelerator
from diffusers import DDIMScheduler
from configs.plugin import get_params
from model.p2e_cross import P2E_Cross
from modules.speaker_encoder.encoder import inference as spk_encoder
from transformers import T5Tokenizer, T5EncoderModel, AutoModel
from inference_freevc import eval_plugin
from dataset.dreamvc import DreamData
# from vc_wrapper import load_diffvc_models
from freevc_wrapper import get_freevc_models
from utils import minmax_norm_diff, reverse_minmax_norm_diff, scale_shift
parser = argparse.ArgumentParser()
# config settings
parser.add_argument('--config-name', type=str, default='Plugin_freevc')
parser.add_argument('--vc-unet-path', type=str, default='freevc')
parser.add_argument('--speaker-path', type=str, default='speaker_encoder/ckpt/pretrained_bak_5805000.pt')
# training settings
parser.add_argument("--amp", type=str, default='fp16')
parser.add_argument('--epochs', type=int, default=200)
parser.add_argument('--batch-size', type=int, default=32)
parser.add_argument('--num-workers', type=int, default=8)
parser.add_argument('--num-threads', type=int, default=1)
parser.add_argument('--save-every', type=int, default=10)
# log and random seed
parser.add_argument('--random-seed', type=int, default=2023)
parser.add_argument('--log-step', type=int, default=200)
parser.add_argument('--log-dir', type=str, default='../logs/')
parser.add_argument('--save-dir', type=str, default='../ckpts/')
args = parser.parse_args()
params = get_params(args.config_name)
args.log_dir = args.log_dir + args.config_name + '/'
with open('model/p2e_cross.yaml', 'r') as fp:
config = yaml.safe_load(fp)
if os.path.exists(args.save_dir + args.config_name) is False:
os.makedirs(args.save_dir + args.config_name)
if os.path.exists(args.log_dir) is False:
os.makedirs(args.log_dir)
if __name__ == '__main__':
# Fix the random seed
random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
# Set device
torch.set_num_threads(args.num_threads)
if torch.cuda.is_available():
args.device = 'cuda'
torch.cuda.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
torch.backends.cuda.matmul.allow_tf32 = True
if torch.backends.cudnn.is_available():
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.benchmark = False
else:
args.device = 'cpu'
train_set = DreamData(data_dir='../prepare_freevc/spk/', meta_dir='../prepare/plugin_meta.csv',
subset='train', prompt_dir='../prepare/prompts.csv',)
train_loader = DataLoader(train_set, num_workers=args.num_workers, batch_size=args.batch_size, shuffle=True)
# use accelerator for multi-gpu training
accelerator = Accelerator(mixed_precision=args.amp)
# vc_unet, hifigan, _, logmel, vc_scheduler = load_diffvc_models(args.vc_unet_path,
# args.vocoder_path,
# args.speaker_path,
# args.vc_config_path,
# accelerator.device)
freevc_24, cmodel, _, hps = get_freevc_models(args.vc_unet_path, args.speaker_path, accelerator.device)
# speaker
# spk_encoder.load_model(Path(args.speaker_path), accelerator.device)
# text encoder
tokenizer = T5Tokenizer.from_pretrained(params.text_encoder.model)
text_encoder = T5EncoderModel.from_pretrained(params.text_encoder.model).to(accelerator.device)
text_encoder.eval()
# main U-Net
model = P2E_Cross(config['diffwrap']).to(accelerator.device)
model.load_state_dict(torch.load('../ckpts/Plugin_freevc/49.pt')['model'])
total_params = sum([param.nelement() for param in model.parameters()])
print("Number of parameter: %.2fM" % (total_params / 1e6))
if params.diff.v_prediction:
print('v prediction')
noise_scheduler = DDIMScheduler(num_train_timesteps=params.diff.num_train_steps,
beta_start=params.diff.beta_start, beta_end=params.diff.beta_end,
rescale_betas_zero_snr=True,
timestep_spacing="trailing",
clip_sample=False,
prediction_type='v_prediction')
else:
print('noise prediction')
noise_scheduler = DDIMScheduler(num_train_timesteps=args.num_train_steps,
beta_start=args.beta_start, beta_end=args.beta_end,
clip_sample=False,
prediction_type='epsilon')
optimizer = torch.optim.AdamW(model.parameters(),
lr=params.opt.learning_rate,
betas=(params.opt.beta1, params.opt.beta2),
weight_decay=params.opt.weight_decay,
eps=params.opt.adam_epsilon,
)
loss_func = torch.nn.MSELoss()
model, optimizer, train_loader = accelerator.prepare(model, optimizer, train_loader)
global_step = 0
losses = 0
if accelerator.is_main_process:
eval_plugin(freevc_24, cmodel, [tokenizer, text_encoder],
model, noise_scheduler, (1, 256, 1),
val_meta='../prepare/val_meta.csv',
val_folder='/home/jerry/Projects/Dataset/Speech/vctk_libritts/',
guidance_scale=3.0, guidance_rescale=0.0,
ddim_steps=100, eta=1, random_seed=None,
device=accelerator.device,
epoch='test', save_path=args.log_dir + 'output/', val_num=10)
accelerator.wait_for_everyone()
for epoch in range(args.epochs):
model.train()
for step, batch in enumerate(tqdm(train_loader)):
spk_embed, prompt = batch
spk_embed = spk_embed.unsqueeze(-1)
with torch.no_grad():
text_batch = tokenizer(prompt,
max_length=32,
padding='max_length', truncation=True, return_tensors="pt")
text, text_mask = text_batch.input_ids.to(spk_embed.device), \
text_batch.attention_mask.to(spk_embed.device)
text = text_encoder(input_ids=text, attention_mask=text_mask)[0]
spk_embed = scale_shift(spk_embed, 20, -0.035)
# spk_embed = minmax_norm_diff(spk_embed, vmax=0.5, vmin=0.0)
# content_clip = align_seq(content_clip, audio_clip.shape[-1])
# f0_clip = align_seq(f0_clip, audio_clip.shape[-1])
# adding noise
noise = torch.randn(spk_embed.shape).to(accelerator.device)
timesteps = torch.randint(0, params.diff.num_train_steps, (noise.shape[0],),
device=accelerator.device, ).long()
noisy_target = noise_scheduler.add_noise(spk_embed, noise, timesteps)
# v prediction - model output
velocity = noise_scheduler.get_velocity(spk_embed, noise, timesteps)
# inference
pred = model(noisy_target, timesteps, text, text_mask, train_cfg=True, cfg_prob=0.25)
# backward
if params.diff.v_prediction:
loss = loss_func(pred, velocity)
else:
loss = loss_func(pred, noise)
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
global_step += 1
losses += loss.item()
if accelerator.is_main_process:
if global_step % args.log_step == 0:
n = open(args.log_dir + 'diff_vc.txt', mode='a')
n.write(time.asctime(time.localtime(time.time())))
n.write('\n')
n.write('Epoch: [{}][{}] Batch: [{}][{}] Loss: {:.6f}\n'.format(
epoch + 1, args.epochs, step + 1, len(train_loader), losses / args.log_step))
n.close()
losses = 0.0
accelerator.wait_for_everyone()
if (epoch + 1) % args.save_every == 0:
if accelerator.is_main_process:
eval_plugin(freevc_24, cmodel, [tokenizer, text_encoder],
model, noise_scheduler, (1, 256, 1),
val_meta='../prepare/val_meta.csv',
val_folder='/home/jerry/Projects/Dataset/Speech/vctk_libritts/',
guidance_scale=3, guidance_rescale=0.0,
ddim_steps=50, eta=1, random_seed=2024,
device=accelerator.device,
epoch=epoch, save_path=args.log_dir + 'output/', val_num=10)
unwrapped_unet = accelerator.unwrap_model(model)
accelerator.save({
"model": unwrapped_unet.state_dict(),
}, args.save_dir + args.config_name + '/' + str(epoch) + '.pt')
|