|
import os
|
|
import torch
|
|
import soundfile as sf
|
|
import pandas as pd
|
|
import librosa
|
|
from utils import minmax_norm_diff, reverse_minmax_norm_diff, scale_shift_re
|
|
from freevc_wrapper import convert
|
|
import time
|
|
|
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
|
"""
|
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
|
"""
|
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
|
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
|
return noise_cfg
|
|
|
|
|
|
@torch.no_grad()
|
|
def inference_timbre(gen_shape, text,
|
|
model, scheduler,
|
|
guidance_scale=5, guidance_rescale=0.7,
|
|
ddim_steps=50, eta=1, random_seed=2023,
|
|
device='cuda',
|
|
):
|
|
text, text_mask = text
|
|
model.eval()
|
|
|
|
if random_seed is not None:
|
|
generator = torch.Generator(device=device).manual_seed(random_seed)
|
|
else:
|
|
generator = torch.Generator(device=device)
|
|
generator.seed()
|
|
|
|
scheduler.set_timesteps(ddim_steps)
|
|
|
|
|
|
noise = torch.randn(gen_shape, generator=generator, device=device)
|
|
latents = noise
|
|
|
|
for t in scheduler.timesteps:
|
|
latents = scheduler.scale_model_input(latents, t)
|
|
|
|
if guidance_scale:
|
|
output_text = model(latents, t, text, text_mask, train_cfg=False)
|
|
output_uncond = model(latents, t, text, text_mask, train_cfg=True, cfg_prob=1.0)
|
|
|
|
output_pred = output_uncond + guidance_scale * (output_text - output_uncond)
|
|
if guidance_rescale > 0.0:
|
|
output_pred = rescale_noise_cfg(output_pred, output_text,
|
|
guidance_rescale=guidance_rescale)
|
|
else:
|
|
output_pred = model(latents, t, text, text_mask, train_cfg=False)
|
|
|
|
latents = scheduler.step(model_output=output_pred, timestep=t, sample=latents,
|
|
eta=eta, generator=generator).prev_sample
|
|
|
|
|
|
pred = scale_shift_re(latents, 20, -0.035)
|
|
pred = torch.clip(pred, min=0.0, max=0.5)
|
|
return pred
|
|
|
|
|
|
@torch.no_grad()
|
|
def eval_plugin(freevc, cmodel, text_model,
|
|
timbre_model, timbre_scheduler, timbre_shape,
|
|
val_meta, val_folder,
|
|
guidance_scale=3, guidance_rescale=0.7,
|
|
ddim_steps=50, eta=1, random_seed=2024,
|
|
device='cuda',
|
|
epoch=0, save_path='logs/eval/', val_num=10, sr=16000):
|
|
|
|
tokenizer, text_encoder = text_model
|
|
|
|
df = pd.read_csv(val_meta)
|
|
|
|
save_path = save_path + str(epoch) + '/'
|
|
os.makedirs(save_path, exist_ok=True)
|
|
|
|
step = 0
|
|
|
|
for i in range(len(df)):
|
|
row = df.iloc[i]
|
|
|
|
source_path = val_folder + row['path']
|
|
|
|
prompt = ["female's voice"]
|
|
with torch.no_grad():
|
|
text_batch = tokenizer(prompt,
|
|
max_length=32,
|
|
padding='max_length', truncation=True, return_tensors="pt")
|
|
text, text_mask = text_batch.input_ids.to(device), \
|
|
text_batch.attention_mask.to(device)
|
|
text = text_encoder(input_ids=text, attention_mask=text_mask)[0]
|
|
|
|
audio_clip = librosa.load(source_path, sr=16000)[0]
|
|
audio_clip = torch.tensor(audio_clip).unsqueeze(0).to(device)
|
|
|
|
content = cmodel(audio_clip).last_hidden_state.transpose(1, 2).to(device)
|
|
|
|
|
|
spk_embed = inference_timbre(timbre_shape, [text, text_mask],
|
|
timbre_model, timbre_scheduler,
|
|
guidance_scale=guidance_scale, guidance_rescale=guidance_rescale,
|
|
ddim_steps=ddim_steps, eta=eta, random_seed=random_seed,
|
|
device=device)
|
|
spk_embed = spk_embed.squeeze(-1)
|
|
|
|
output, out_sr = convert(freevc, content, spk_embed)
|
|
|
|
|
|
|
|
sf.write(save_path + f'{step}_{prompt[0]}' + '.wav', output, samplerate=sr)
|
|
|
|
step += 1
|
|
|
|
if step >= val_num:
|
|
break
|
|
|