|
import torch
|
|
import torch.nn as nn
|
|
from diffusers import UNet2DModel, UNet2DConditionModel
|
|
import yaml
|
|
from einops import repeat, rearrange
|
|
|
|
from typing import Any
|
|
from torch import Tensor
|
|
|
|
|
|
def rand_bool(shape: Any, proba: float, device: Any = None) -> Tensor:
|
|
if proba == 1:
|
|
return torch.ones(shape, device=device, dtype=torch.bool)
|
|
elif proba == 0:
|
|
return torch.zeros(shape, device=device, dtype=torch.bool)
|
|
else:
|
|
return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
|
|
|
|
|
|
class FixedEmbedding(nn.Module):
|
|
def __init__(self, features=128):
|
|
super().__init__()
|
|
self.embedding = nn.Embedding(1, features)
|
|
|
|
def forward(self, y):
|
|
B, L, C, device = y.shape[0], y.shape[-2], y.shape[-1], y.device
|
|
embed = self.embedding(torch.zeros(B, device=device).long())
|
|
fixed_embedding = repeat(embed, "b c -> b l c", l=L)
|
|
return fixed_embedding
|
|
|
|
|
|
class P2E_Cross(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.unet = UNet2DConditionModel(**self.config['unet'])
|
|
self.unet.set_use_memory_efficient_attention_xformers(True)
|
|
self.cfg_embedding = FixedEmbedding(self.config['unet']['cross_attention_dim'])
|
|
|
|
self.context_embedding = nn.Sequential(
|
|
nn.Linear(self.config['unet']['cross_attention_dim'], self.config['unet']['cross_attention_dim']),
|
|
nn.SiLU(),
|
|
nn.Linear(self.config['unet']['cross_attention_dim'], self.config['unet']['cross_attention_dim']))
|
|
|
|
def forward(self, target, t, prompt, prompt_mask=None,
|
|
train_cfg=False, cfg_prob=0.0):
|
|
B, C = target.shape
|
|
target = target.unsqueeze(-1).unsqueeze(-1)
|
|
|
|
if train_cfg:
|
|
if cfg_prob > 0.0:
|
|
|
|
batch_mask = rand_bool(shape=(B, 1, 1), proba=cfg_prob, device=target.device)
|
|
fixed_embedding = self.cfg_embedding(prompt).to(target.dtype)
|
|
prompt = torch.where(batch_mask, fixed_embedding, prompt)
|
|
|
|
prompt = self.context_embedding(prompt)
|
|
|
|
target = target.to(prompt.dtype)
|
|
|
|
output = self.unet(sample=target, timestep=t,
|
|
encoder_hidden_states=prompt,
|
|
encoder_attention_mask=prompt_mask)['sample']
|
|
|
|
return output.squeeze(-1).squeeze(-1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
with open('p2e_cross.yaml', 'r') as fp:
|
|
config = yaml.safe_load(fp)
|
|
device = 'cuda'
|
|
|
|
model = P2E_Cross(config['diffwrap']).to(device)
|
|
|
|
x = torch.rand((2, 256)).to(device)
|
|
t = torch.randint(0, 1000, (2,)).long().to(device)
|
|
prompt = torch.rand(2, 64, 768).to(device)
|
|
prompt_mask = torch.ones(2, 64).to(device)
|
|
|
|
output = model(x, t, prompt, prompt_mask, train_cfg=True, cfg_prob=0.25) |