openvoice_plugin
Browse files- dreamvoice/.ipynb_checkpoints/__init__-checkpoint.py +2 -0
- dreamvoice/.ipynb_checkpoints/api-checkpoint.py +295 -0
- dreamvoice/.ipynb_checkpoints/dreamvc-checkpoint.yaml +27 -0
- dreamvoice/.ipynb_checkpoints/openvoice_utils-checkpoint.py +48 -0
- dreamvoice/.ipynb_checkpoints/plugin-checkpoint.py +128 -0
- dreamvoice/.ipynb_checkpoints/plugin-checkpoint.yaml +8 -0
- dreamvoice/__init__.py +2 -1
- dreamvoice/__pycache__/__init__.cpython-310.pyc +0 -0
- dreamvoice/__pycache__/api.cpython-310.pyc +0 -0
- dreamvoice/__pycache__/openvoice_utils.cpython-310.pyc +0 -0
- dreamvoice/__pycache__/plugin.cpython-310.pyc +0 -0
- dreamvoice/dreamvc.yaml +2 -1
- dreamvoice/openvoice_utils.py +48 -0
- dreamvoice/plugin.py +128 -0
- dreamvoice/plugin.yaml +8 -0
- dreamvoice/plugin_ckpts/openvoice_v2.pt +3 -0
- dreamvoice/src/.ipynb_checkpoints/plugin_wrapper-checkpoint.py +76 -0
- dreamvoice/src/.ipynb_checkpoints/vc_wrapper-checkpoint.py +144 -0
- dreamvoice/src/__pycache__/plugin_wrapper.cpython-310.pyc +0 -0
- dreamvoice/src/__pycache__/vc_wrapper.cpython-310.pyc +0 -0
- dreamvoice/src/configs/.ipynb_checkpoints/plugin_cross-checkpoint.yaml +39 -0
- dreamvoice/src/configs/.ipynb_checkpoints/plugin_cross_openvoice-checkpoint.yaml +39 -0
- dreamvoice/src/configs/plugin_cross_openvoice.yaml +39 -0
- dreamvoice/src/feats/__pycache__/contentvec_hf.cpython-310.pyc +0 -0
- dreamvoice/src/model/__pycache__/model.cpython-310.pyc +0 -0
- dreamvoice/src/model/__pycache__/model_cross.cpython-310.pyc +0 -0
- dreamvoice/src/model/__pycache__/p2e_cross.cpython-310.pyc +0 -0
- dreamvoice/src/modules/BigVGAN/__pycache__/env.cpython-310.pyc +0 -0
- dreamvoice/src/modules/BigVGAN/__pycache__/inference.cpython-310.pyc +0 -0
- dreamvoice/src/modules/BigVGAN/__pycache__/models.cpython-310.pyc +0 -0
- dreamvoice/src/modules/BigVGAN/__pycache__/utils.cpython-310.pyc +0 -0
- dreamvoice/src/modules/BigVGAN/activations/__pycache__/activations.cpython-310.pyc +0 -0
- dreamvoice/src/modules/BigVGAN/alias_free_torch/__pycache__/__init__.cpython-310.pyc +0 -0
- dreamvoice/src/modules/BigVGAN/alias_free_torch/__pycache__/act.cpython-310.pyc +0 -0
- dreamvoice/src/modules/BigVGAN/alias_free_torch/__pycache__/filter.cpython-310.pyc +0 -0
- dreamvoice/src/modules/BigVGAN/alias_free_torch/__pycache__/resample.cpython-310.pyc +0 -0
- dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/__init__.cpython-310.pyc +0 -0
- dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/audio.cpython-310.pyc +0 -0
- dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/inference.cpython-310.pyc +0 -0
- dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/model.cpython-310.pyc +0 -0
- dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/params_data.cpython-310.pyc +0 -0
- dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/params_model.cpython-310.pyc +0 -0
- dreamvoice/src/train_plugin.py +0 -0
- dreamvoice/src/train_vc.py +0 -0
- dreamvoice/src/utils/__pycache__/__init__.cpython-310.pyc +0 -0
- dreamvoice/src/utils/__pycache__/utils.cpython-310.pyc +0 -0
dreamvoice/.ipynb_checkpoints/__init__-checkpoint.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .api import DreamVoice
|
2 |
+
from .plugin import DreamVoice_Plugin
|
dreamvoice/.ipynb_checkpoints/api-checkpoint.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import yaml
|
4 |
+
import torch
|
5 |
+
import librosa
|
6 |
+
import numpy as np
|
7 |
+
import soundfile as sf
|
8 |
+
from pathlib import Path
|
9 |
+
from transformers import T5Tokenizer, T5EncoderModel
|
10 |
+
from tqdm import tqdm
|
11 |
+
from .src.vc_wrapper import ReDiffVC, DreamVC
|
12 |
+
from .src.plugin_wrapper import DreamVG
|
13 |
+
from .src.modules.speaker_encoder.encoder import inference as spk_encoder
|
14 |
+
from .src.modules.BigVGAN.inference import load_model as load_vocoder
|
15 |
+
from .src.feats.contentvec_hf import get_content_model, get_content
|
16 |
+
|
17 |
+
|
18 |
+
class DreamVoice:
|
19 |
+
def __init__(self, config='dreamvc.yaml', mode='plugin', device='cuda', chunk_size=16):
|
20 |
+
# Initial setup
|
21 |
+
script_dir = Path(__file__).resolve().parent
|
22 |
+
config_path = script_dir / config
|
23 |
+
|
24 |
+
# Load configuration file
|
25 |
+
with open(config_path, 'r') as fp:
|
26 |
+
self.config = yaml.safe_load(fp)
|
27 |
+
|
28 |
+
self.script_dir = script_dir
|
29 |
+
|
30 |
+
# Ensure all checkpoints are downloaded
|
31 |
+
self._ensure_checkpoints_exist()
|
32 |
+
|
33 |
+
# Initialize attributes
|
34 |
+
self.device = device
|
35 |
+
self.sr = self.config['sample_rate']
|
36 |
+
|
37 |
+
# Load vocoder
|
38 |
+
vocoder_path = script_dir / self.config['vocoder_path']
|
39 |
+
self.hifigan, _ = load_vocoder(vocoder_path, device)
|
40 |
+
self.hifigan.eval()
|
41 |
+
|
42 |
+
# Load content model
|
43 |
+
self.content_model = get_content_model().to(device)
|
44 |
+
|
45 |
+
# Load tokenizer and text encoder
|
46 |
+
lm_path = self.config['lm_path']
|
47 |
+
self.tokenizer = T5Tokenizer.from_pretrained(lm_path)
|
48 |
+
self.text_encoder = T5EncoderModel.from_pretrained(lm_path).to(device).eval()
|
49 |
+
|
50 |
+
# Set mode
|
51 |
+
self.mode = mode
|
52 |
+
if mode == 'plugin':
|
53 |
+
self._init_plugin_mode()
|
54 |
+
elif mode == 'end2end':
|
55 |
+
self._init_end2end_mode()
|
56 |
+
else:
|
57 |
+
raise NotImplementedError("Select mode from 'plugin' and 'end2end'")
|
58 |
+
|
59 |
+
# chunk inputs to 10s clips
|
60 |
+
self.chunk_size = chunk_size * 50
|
61 |
+
|
62 |
+
def _ensure_checkpoints_exist(self):
|
63 |
+
checkpoints = [
|
64 |
+
('vocoder_path', self.config.get('vocoder_url')),
|
65 |
+
('vocoder_config_path', self.config.get('vocoder_config_url')),
|
66 |
+
('speaker_path', self.config.get('speaker_url')),
|
67 |
+
('dreamvc.ckpt_path', self.config.get('dreamvc', {}).get('ckpt_url')),
|
68 |
+
('rediffvc.ckpt_path', self.config.get('rediffvc', {}).get('ckpt_url')),
|
69 |
+
('dreamvg.ckpt_path', self.config.get('dreamvg', {}).get('ckpt_url'))
|
70 |
+
]
|
71 |
+
|
72 |
+
for path_key, url in checkpoints:
|
73 |
+
local_path = self._get_local_path(path_key)
|
74 |
+
if not local_path.exists() and url:
|
75 |
+
print(f"Downloading {path_key} from {url}")
|
76 |
+
self._download_file(url, local_path)
|
77 |
+
|
78 |
+
def _get_local_path(self, path_key):
|
79 |
+
keys = path_key.split('.')
|
80 |
+
local_path = self.config
|
81 |
+
for key in keys:
|
82 |
+
local_path = local_path.get(key, {})
|
83 |
+
return self.script_dir / local_path
|
84 |
+
|
85 |
+
def _download_file(self, url, local_path):
|
86 |
+
try:
|
87 |
+
# Attempt to send a GET request to the URL
|
88 |
+
response = requests.get(url, stream=True)
|
89 |
+
response.raise_for_status() # Ensure we raise an exception for HTTP errors
|
90 |
+
except requests.exceptions.RequestException as e:
|
91 |
+
# Log the error for debugging purposes
|
92 |
+
print(f"Error encountered: {e}")
|
93 |
+
|
94 |
+
# Development mode: prompt user for Hugging Face API key
|
95 |
+
user_input = input("Private checkpoint, please request authorization and enter your Hugging Face API key.")
|
96 |
+
self.hf_key = user_input if user_input else None
|
97 |
+
|
98 |
+
# Set headers if an API key is provided
|
99 |
+
headers = {'Authorization': f'Bearer {self.hf_key}'} if self.hf_key else {}
|
100 |
+
|
101 |
+
try:
|
102 |
+
# Attempt to send a GET request with headers in development mode
|
103 |
+
response = requests.get(url, stream=True, headers=headers)
|
104 |
+
response.raise_for_status() # Ensure we raise an exception for HTTP errors
|
105 |
+
except requests.exceptions.RequestException as e:
|
106 |
+
# Log the error for debugging purposes
|
107 |
+
print(f"Error encountered in dev mode: {e}")
|
108 |
+
response = None # Handle response accordingly in your code
|
109 |
+
|
110 |
+
local_path.parent.mkdir(parents=True, exist_ok=True)
|
111 |
+
|
112 |
+
total_size = int(response.headers.get('content-length', 0))
|
113 |
+
block_size = 8192
|
114 |
+
t = tqdm(total=total_size, unit='iB', unit_scale=True)
|
115 |
+
|
116 |
+
with open(local_path, 'wb') as f:
|
117 |
+
for chunk in response.iter_content(chunk_size=block_size):
|
118 |
+
t.update(len(chunk))
|
119 |
+
f.write(chunk)
|
120 |
+
t.close()
|
121 |
+
|
122 |
+
def _init_plugin_mode(self):
|
123 |
+
# Initialize ReDiffVC
|
124 |
+
self.dreamvc = ReDiffVC(
|
125 |
+
config_path=self.script_dir / self.config['rediffvc']['config_path'],
|
126 |
+
ckpt_path=self.script_dir / self.config['rediffvc']['ckpt_path'],
|
127 |
+
device=self.device
|
128 |
+
)
|
129 |
+
|
130 |
+
# Initialize DreamVG
|
131 |
+
self.dreamvg = DreamVG(
|
132 |
+
config_path=self.script_dir / self.config['dreamvg']['config_path'],
|
133 |
+
ckpt_path=self.script_dir / self.config['dreamvg']['ckpt_path'],
|
134 |
+
device=self.device
|
135 |
+
)
|
136 |
+
|
137 |
+
# Load speaker encoder
|
138 |
+
spk_encoder.load_model(self.script_dir / self.config['speaker_path'], self.device)
|
139 |
+
self.spk_encoder = spk_encoder
|
140 |
+
self.spk_embed_cache = None
|
141 |
+
|
142 |
+
def _init_end2end_mode(self):
|
143 |
+
# Initialize DreamVC
|
144 |
+
self.dreamvc = DreamVC(
|
145 |
+
config_path=self.script_dir / self.config['dreamvc']['config_path'],
|
146 |
+
ckpt_path=self.script_dir / self.config['dreamvc']['ckpt_path'],
|
147 |
+
device=self.device
|
148 |
+
)
|
149 |
+
|
150 |
+
def _load_content(self, audio_path):
|
151 |
+
content_audio, _ = librosa.load(audio_path, sr=16000)
|
152 |
+
# Calculate the required length to make it a multiple of 16*160
|
153 |
+
target_length = ((len(content_audio) + 16*160 - 1) // (16*160)) * (16*160)
|
154 |
+
# Pad with zeros if necessary
|
155 |
+
if len(content_audio) < target_length:
|
156 |
+
content_audio = np.pad(content_audio, (0, target_length - len(content_audio)), mode='constant')
|
157 |
+
content_audio = torch.tensor(content_audio).unsqueeze(0).to(self.device)
|
158 |
+
content_clip = get_content(self.content_model, content_audio)
|
159 |
+
return content_clip
|
160 |
+
|
161 |
+
def load_spk_embed(self, emb_path):
|
162 |
+
self.spk_embed_cache = torch.load(emb_path, map_location=self.device)
|
163 |
+
|
164 |
+
def save_spk_embed(self, emb_path):
|
165 |
+
assert self.spk_embed_cache is not None
|
166 |
+
torch.save(self.spk_embed_cache.cpu(), emb_path)
|
167 |
+
|
168 |
+
def save_audio(self, output_path, audio, sr):
|
169 |
+
sf.write(output_path, audio, samplerate=sr)
|
170 |
+
|
171 |
+
@torch.no_grad()
|
172 |
+
def genvc(self, content_audio, prompt,
|
173 |
+
prompt_guidance_scale=3, prompt_guidance_rescale=0.0,
|
174 |
+
prompt_ddim_steps=100, prompt_eta=1, prompt_random_seed=None,
|
175 |
+
vc_guidance_scale=3, vc_guidance_rescale=0.0,
|
176 |
+
vc_ddim_steps=50, vc_eta=1, vc_random_seed=None,
|
177 |
+
):
|
178 |
+
|
179 |
+
content_clip = self._load_content(content_audio)
|
180 |
+
|
181 |
+
text_batch = self.tokenizer(prompt, max_length=32,
|
182 |
+
padding='max_length', truncation=True, return_tensors="pt")
|
183 |
+
text, text_mask = text_batch.input_ids.to(self.device), \
|
184 |
+
text_batch.attention_mask.to(self.device)
|
185 |
+
text = self.text_encoder(input_ids=text, attention_mask=text_mask)[0]
|
186 |
+
|
187 |
+
if self.mode == 'plugin':
|
188 |
+
spk_embed = self.dreamvg.inference([text, text_mask],
|
189 |
+
guidance_scale=prompt_guidance_scale,
|
190 |
+
guidance_rescale=prompt_guidance_rescale,
|
191 |
+
ddim_steps=prompt_ddim_steps, eta=prompt_eta,
|
192 |
+
random_seed=prompt_random_seed)
|
193 |
+
|
194 |
+
B, L, D = content_clip.shape
|
195 |
+
gen_audio_chunks = []
|
196 |
+
num_chunks = (L + self.chunk_size - 1) // self.chunk_size
|
197 |
+
for i in range(num_chunks):
|
198 |
+
start_idx = i * self.chunk_size
|
199 |
+
end_idx = min((i + 1) * self.chunk_size, L)
|
200 |
+
content_clip_chunk = content_clip[:, start_idx:end_idx, :]
|
201 |
+
|
202 |
+
gen_audio_chunk = self.dreamvc.inference(
|
203 |
+
spk_embed, content_clip_chunk, None,
|
204 |
+
guidance_scale=vc_guidance_scale,
|
205 |
+
guidance_rescale=vc_guidance_rescale,
|
206 |
+
ddim_steps=vc_ddim_steps,
|
207 |
+
eta=vc_eta,
|
208 |
+
random_seed=vc_random_seed)
|
209 |
+
|
210 |
+
gen_audio_chunks.append(gen_audio_chunk)
|
211 |
+
|
212 |
+
gen_audio = torch.cat(gen_audio_chunks, dim=-1)
|
213 |
+
|
214 |
+
self.spk_embed_cache = spk_embed
|
215 |
+
|
216 |
+
elif self.mode == 'end2end':
|
217 |
+
B, L, D = content_clip.shape
|
218 |
+
gen_audio_chunks = []
|
219 |
+
num_chunks = (L + self.chunk_size - 1) // self.chunk_size
|
220 |
+
|
221 |
+
for i in range(num_chunks):
|
222 |
+
start_idx = i * self.chunk_size
|
223 |
+
end_idx = min((i + 1) * self.chunk_size, L)
|
224 |
+
content_clip_chunk = content_clip[:, start_idx:end_idx, :]
|
225 |
+
|
226 |
+
gen_audio_chunk = self.dreamvc.inference([text, text_mask], content_clip,
|
227 |
+
guidance_scale=prompt_guidance_scale,
|
228 |
+
guidance_rescale=prompt_guidance_rescale,
|
229 |
+
ddim_steps=prompt_ddim_steps,
|
230 |
+
eta=prompt_eta, random_seed=prompt_random_seed)
|
231 |
+
gen_audio_chunks.append(gen_audio_chunk)
|
232 |
+
|
233 |
+
gen_audio = torch.cat(gen_audio_chunks, dim=-1)
|
234 |
+
|
235 |
+
else:
|
236 |
+
raise NotImplementedError("Select mode from 'plugin' and 'end2end'")
|
237 |
+
|
238 |
+
gen_audio = self.hifigan(gen_audio.squeeze(1))
|
239 |
+
gen_audio = gen_audio.cpu().numpy().squeeze(0).squeeze(0)
|
240 |
+
|
241 |
+
return gen_audio, self.sr
|
242 |
+
|
243 |
+
@torch.no_grad()
|
244 |
+
def simplevc(self, content_audio, speaker_audio=None, use_spk_cache=False,
|
245 |
+
vc_guidance_scale=3, vc_guidance_rescale=0.0,
|
246 |
+
vc_ddim_steps=50, vc_eta=1, vc_random_seed=None,
|
247 |
+
):
|
248 |
+
|
249 |
+
assert self.mode == 'plugin'
|
250 |
+
if speaker_audio is not None:
|
251 |
+
speaker_audio, _ = librosa.load(speaker_audio, sr=16000)
|
252 |
+
speaker_audio = torch.tensor(speaker_audio).unsqueeze(0).to(self.device)
|
253 |
+
spk_embed = spk_encoder.embed_utterance_batch(speaker_audio)
|
254 |
+
self.spk_embed_cache = spk_embed
|
255 |
+
elif use_spk_cache:
|
256 |
+
assert self.spk_embed_cache is not None
|
257 |
+
spk_embed = self.spk_embed_cache
|
258 |
+
else:
|
259 |
+
raise NotImplementedError
|
260 |
+
|
261 |
+
content_clip = self._load_content(content_audio)
|
262 |
+
|
263 |
+
B, L, D = content_clip.shape
|
264 |
+
gen_audio_chunks = []
|
265 |
+
num_chunks = (L + self.chunk_size - 1) // self.chunk_size
|
266 |
+
for i in range(num_chunks):
|
267 |
+
start_idx = i * self.chunk_size
|
268 |
+
end_idx = min((i + 1) * self.chunk_size, L)
|
269 |
+
content_clip_chunk = content_clip[:, start_idx:end_idx, :]
|
270 |
+
|
271 |
+
gen_audio_chunk = self.dreamvc.inference(
|
272 |
+
spk_embed, content_clip_chunk, None,
|
273 |
+
guidance_scale=vc_guidance_scale,
|
274 |
+
guidance_rescale=vc_guidance_rescale,
|
275 |
+
ddim_steps=vc_ddim_steps,
|
276 |
+
eta=vc_eta,
|
277 |
+
random_seed=vc_random_seed)
|
278 |
+
|
279 |
+
gen_audio_chunks.append(gen_audio_chunk)
|
280 |
+
|
281 |
+
gen_audio = torch.cat(gen_audio_chunks, dim=-1)
|
282 |
+
|
283 |
+
gen_audio = self.hifigan(gen_audio.squeeze(1))
|
284 |
+
gen_audio = gen_audio.cpu().numpy().squeeze(0).squeeze(0)
|
285 |
+
|
286 |
+
return gen_audio, self.sr
|
287 |
+
|
288 |
+
|
289 |
+
if __name__ == '__main__':
|
290 |
+
dreamvoice = DreamVoice(config='dreamvc.yaml', mode='plugin', device='cuda')
|
291 |
+
content_audio = 'test.wav'
|
292 |
+
speaker_audio = 'speaker.wav'
|
293 |
+
prompt = 'young female voice, sounds young and cute'
|
294 |
+
gen_audio, sr = dreamvoice.genvc('test.wav', prompt)
|
295 |
+
dreamvoice.save_audio('debug.wav', gen_audio, sr)
|
dreamvoice/.ipynb_checkpoints/dreamvc-checkpoint.yaml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.1
|
2 |
+
|
3 |
+
sample_rate: 24000
|
4 |
+
vocoder_path: 'ckpts/bigvgan_24k/g_01000000.pt'
|
5 |
+
vocoder_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/bigvgan_24k/g_01000000.pt'
|
6 |
+
vocoder_config_path: 'ckpts/bigvgan_24k/config.json'
|
7 |
+
vocoder_config_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/bigvgan_24k/config.json'
|
8 |
+
|
9 |
+
speaker_path: 'ckpts/spk_encoder/pretrained.pt'
|
10 |
+
speaker_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/spk_encoder/pretrained.pt'
|
11 |
+
lm_path: 'google/flan-t5-base'
|
12 |
+
|
13 |
+
dreamvc:
|
14 |
+
config_path: 'src/configs/diffvc_cross.yaml'
|
15 |
+
ckpt_path: 'ckpts/dreamvc_cross.pt'
|
16 |
+
ckpt_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/dreamvc_cross.pt'
|
17 |
+
|
18 |
+
rediffvc:
|
19 |
+
config_path: 'src/configs/diffvc_base.yaml'
|
20 |
+
ckpt_path: 'ckpts/dreamvc_base.pt'
|
21 |
+
ckpt_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/dreamvc_base.pt'
|
22 |
+
|
23 |
+
dreamvg:
|
24 |
+
config_path: 'src/configs/plugin_cross.yaml'
|
25 |
+
ckpt_path: 'ckpts/dreamvc_plugin.pt'
|
26 |
+
ckpt_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/dreamvc_plugin.pt'
|
27 |
+
|
dreamvoice/.ipynb_checkpoints/openvoice_utils-checkpoint.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import librosa
|
4 |
+
from tqdm import tqdm
|
5 |
+
from openvoice.mel_processing import spectrogram_torch
|
6 |
+
from whisper_timestamped.transcribe import get_audio_tensor, get_vad_segments
|
7 |
+
|
8 |
+
|
9 |
+
@torch.no_grad()
|
10 |
+
def se_extractor(audio_path, vc):
|
11 |
+
# vad
|
12 |
+
SAMPLE_RATE = 16000
|
13 |
+
audio_vad = get_audio_tensor(audio_path)
|
14 |
+
segments = get_vad_segments(
|
15 |
+
audio_vad,
|
16 |
+
output_sample=True,
|
17 |
+
min_speech_duration=0.1,
|
18 |
+
min_silence_duration=1,
|
19 |
+
method="silero",
|
20 |
+
)
|
21 |
+
segments = [(seg["start"], seg["end"]) for seg in segments]
|
22 |
+
segments = [(float(s) / SAMPLE_RATE, float(e) / SAMPLE_RATE) for s,e in segments]
|
23 |
+
|
24 |
+
if len(segments) == 0:
|
25 |
+
segments = [(0, len(audio_vad)/SAMPLE_RATE)]
|
26 |
+
print(segments)
|
27 |
+
|
28 |
+
# spk
|
29 |
+
hps = vc.hps
|
30 |
+
device = vc.device
|
31 |
+
model = vc.model
|
32 |
+
gs = []
|
33 |
+
|
34 |
+
audio, sr = librosa.load(audio_path, sr=hps.data.sampling_rate)
|
35 |
+
audio = torch.tensor(audio).float().to(device)
|
36 |
+
|
37 |
+
for s, e in segments:
|
38 |
+
y = audio[int(hps.data.sampling_rate*s):int(hps.data.sampling_rate*e)]
|
39 |
+
y = y.to(device)
|
40 |
+
y = y.unsqueeze(0)
|
41 |
+
y = spectrogram_torch(y, hps.data.filter_length,
|
42 |
+
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
43 |
+
center=False).to(device)
|
44 |
+
g = model.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
45 |
+
gs.append(g.detach())
|
46 |
+
|
47 |
+
gs = torch.stack(gs).mean(0)
|
48 |
+
return gs.cpu()
|
dreamvoice/.ipynb_checkpoints/plugin-checkpoint.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import yaml
|
4 |
+
import torch
|
5 |
+
import librosa
|
6 |
+
import numpy as np
|
7 |
+
import soundfile as sf
|
8 |
+
from pathlib import Path
|
9 |
+
from transformers import T5Tokenizer, T5EncoderModel
|
10 |
+
from tqdm import tqdm
|
11 |
+
from .src.plugin_wrapper import DreamVG
|
12 |
+
|
13 |
+
|
14 |
+
class DreamVoice_Plugin:
|
15 |
+
def __init__(self, config='plugin.yaml', device='cuda'):
|
16 |
+
# Initial setup
|
17 |
+
script_dir = Path(__file__).resolve().parent
|
18 |
+
config_path = script_dir / config
|
19 |
+
|
20 |
+
# Load configuration file
|
21 |
+
with open(config_path, 'r') as fp:
|
22 |
+
self.config = yaml.safe_load(fp)
|
23 |
+
|
24 |
+
self.script_dir = script_dir
|
25 |
+
|
26 |
+
# Ensure all checkpoints are downloaded
|
27 |
+
self._ensure_checkpoints_exist()
|
28 |
+
|
29 |
+
# Initialize attributes
|
30 |
+
self.device = device
|
31 |
+
|
32 |
+
# Load tokenizer and text encoder
|
33 |
+
lm_path = self.config['lm_path']
|
34 |
+
self.tokenizer = T5Tokenizer.from_pretrained(lm_path)
|
35 |
+
self.text_encoder = T5EncoderModel.from_pretrained(lm_path).to(device).eval()
|
36 |
+
|
37 |
+
self.dreamvg = DreamVG(
|
38 |
+
config_path=self.script_dir / self.config['dreamvg']['config_path'],
|
39 |
+
ckpt_path=self.script_dir / self.config['dreamvg']['ckpt_path'],
|
40 |
+
device=self.device
|
41 |
+
|
42 |
+
)
|
43 |
+
def _ensure_checkpoints_exist(self):
|
44 |
+
checkpoints = [
|
45 |
+
('dreamvg.ckpt_path', self.config.get('dreamvg', {}).get('ckpt_url'))
|
46 |
+
]
|
47 |
+
|
48 |
+
for path_key, url in checkpoints:
|
49 |
+
local_path = self._get_local_path(path_key)
|
50 |
+
if not local_path.exists() and url:
|
51 |
+
print(f"Downloading {path_key} from {url}")
|
52 |
+
self._download_file(url, local_path)
|
53 |
+
|
54 |
+
def _get_local_path(self, path_key):
|
55 |
+
keys = path_key.split('.')
|
56 |
+
local_path = self.config
|
57 |
+
for key in keys:
|
58 |
+
local_path = local_path.get(key, {})
|
59 |
+
return self.script_dir / local_path
|
60 |
+
|
61 |
+
def _download_file(self, url, local_path):
|
62 |
+
try:
|
63 |
+
# Attempt to send a GET request to the URL
|
64 |
+
response = requests.get(url, stream=True)
|
65 |
+
response.raise_for_status() # Ensure we raise an exception for HTTP errors
|
66 |
+
except requests.exceptions.RequestException as e:
|
67 |
+
# Log the error for debugging purposes
|
68 |
+
print(f"Error encountered: {e}")
|
69 |
+
|
70 |
+
# Development mode: prompt user for Hugging Face API key
|
71 |
+
user_input = input("Private checkpoint, please request authorization and enter your Hugging Face API key.")
|
72 |
+
self.hf_key = user_input if user_input else None
|
73 |
+
|
74 |
+
# Set headers if an API key is provided
|
75 |
+
headers = {'Authorization': f'Bearer {self.hf_key}'} if self.hf_key else {}
|
76 |
+
|
77 |
+
try:
|
78 |
+
# Attempt to send a GET request with headers in development mode
|
79 |
+
response = requests.get(url, stream=True, headers=headers)
|
80 |
+
response.raise_for_status() # Ensure we raise an exception for HTTP errors
|
81 |
+
except requests.exceptions.RequestException as e:
|
82 |
+
# Log the error for debugging purposes
|
83 |
+
print(f"Error encountered in dev mode: {e}")
|
84 |
+
response = None # Handle response accordingly in your code
|
85 |
+
|
86 |
+
local_path.parent.mkdir(parents=True, exist_ok=True)
|
87 |
+
|
88 |
+
total_size = int(response.headers.get('content-length', 0))
|
89 |
+
block_size = 8192
|
90 |
+
t = tqdm(total=total_size, unit='iB', unit_scale=True)
|
91 |
+
|
92 |
+
with open(local_path, 'wb') as f:
|
93 |
+
for chunk in response.iter_content(chunk_size=block_size):
|
94 |
+
t.update(len(chunk))
|
95 |
+
f.write(chunk)
|
96 |
+
t.close()
|
97 |
+
|
98 |
+
def _init_plugin_mode(self):
|
99 |
+
# Initialize DreamVG
|
100 |
+
self.dreamvg = DreamVG(
|
101 |
+
config_path=self.script_dir / self.config['dreamvg']['config_path'],
|
102 |
+
ckpt_path=self.script_dir / self.config['dreamvg']['ckpt_path'],
|
103 |
+
device=self.device
|
104 |
+
)
|
105 |
+
|
106 |
+
# Load speaker encoder
|
107 |
+
spk_encoder.load_model(self.script_dir / self.config['speaker_path'], self.device)
|
108 |
+
self.spk_encoder = spk_encoder
|
109 |
+
self.spk_embed_cache = None
|
110 |
+
|
111 |
+
|
112 |
+
@torch.no_grad()
|
113 |
+
def gen_spk(self, prompt,
|
114 |
+
prompt_guidance_scale=3, prompt_guidance_rescale=0.0,
|
115 |
+
prompt_ddim_steps=100, prompt_eta=1, prompt_random_seed=None,):
|
116 |
+
|
117 |
+
text_batch = self.tokenizer(prompt, max_length=32,
|
118 |
+
padding='max_length', truncation=True, return_tensors="pt")
|
119 |
+
text, text_mask = text_batch.input_ids.to(self.device), \
|
120 |
+
text_batch.attention_mask.to(self.device)
|
121 |
+
text = self.text_encoder(input_ids=text, attention_mask=text_mask)[0]
|
122 |
+
|
123 |
+
spk_embed = self.dreamvg.inference([text, text_mask],
|
124 |
+
guidance_scale=prompt_guidance_scale,
|
125 |
+
guidance_rescale=prompt_guidance_rescale,
|
126 |
+
ddim_steps=prompt_ddim_steps, eta=prompt_eta,
|
127 |
+
random_seed=prompt_random_seed)
|
128 |
+
return spk_embed
|
dreamvoice/.ipynb_checkpoints/plugin-checkpoint.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.1
|
2 |
+
|
3 |
+
lm_path: 'google/flan-t5-base'
|
4 |
+
|
5 |
+
dreamvg:
|
6 |
+
config_path: 'src/configs/plugin_cross_openvoice.yaml'
|
7 |
+
ckpt_path: 'plugin_ckpts/openvoice_v2.pt'
|
8 |
+
ckpt_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/plugin_ckpts/openvoice_v2.pt'
|
dreamvoice/__init__.py
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
from .api import DreamVoice
|
|
|
|
1 |
+
from .api import DreamVoice
|
2 |
+
from .plugin import DreamVoice_Plugin
|
dreamvoice/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (244 Bytes). View file
|
|
dreamvoice/__pycache__/api.cpython-310.pyc
ADDED
Binary file (8.04 kB). View file
|
|
dreamvoice/__pycache__/openvoice_utils.cpython-310.pyc
ADDED
Binary file (1.65 kB). View file
|
|
dreamvoice/__pycache__/plugin.cpython-310.pyc
ADDED
Binary file (4.01 kB). View file
|
|
dreamvoice/dreamvc.yaml
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
version: 1.
|
2 |
|
3 |
sample_rate: 24000
|
4 |
vocoder_path: 'ckpts/bigvgan_24k/g_01000000.pt'
|
@@ -24,3 +24,4 @@ dreamvg:
|
|
24 |
config_path: 'src/configs/plugin_cross.yaml'
|
25 |
ckpt_path: 'ckpts/dreamvc_plugin.pt'
|
26 |
ckpt_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/dreamvc_plugin.pt'
|
|
|
|
1 |
+
version: 1.1
|
2 |
|
3 |
sample_rate: 24000
|
4 |
vocoder_path: 'ckpts/bigvgan_24k/g_01000000.pt'
|
|
|
24 |
config_path: 'src/configs/plugin_cross.yaml'
|
25 |
ckpt_path: 'ckpts/dreamvc_plugin.pt'
|
26 |
ckpt_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/dreamvc_plugin.pt'
|
27 |
+
|
dreamvoice/openvoice_utils.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import librosa
|
4 |
+
from tqdm import tqdm
|
5 |
+
from openvoice.mel_processing import spectrogram_torch
|
6 |
+
from whisper_timestamped.transcribe import get_audio_tensor, get_vad_segments
|
7 |
+
|
8 |
+
|
9 |
+
@torch.no_grad()
|
10 |
+
def se_extractor(audio_path, vc):
|
11 |
+
# vad
|
12 |
+
SAMPLE_RATE = 16000
|
13 |
+
audio_vad = get_audio_tensor(audio_path)
|
14 |
+
segments = get_vad_segments(
|
15 |
+
audio_vad,
|
16 |
+
output_sample=True,
|
17 |
+
min_speech_duration=0.1,
|
18 |
+
min_silence_duration=1,
|
19 |
+
method="silero",
|
20 |
+
)
|
21 |
+
segments = [(seg["start"], seg["end"]) for seg in segments]
|
22 |
+
segments = [(float(s) / SAMPLE_RATE, float(e) / SAMPLE_RATE) for s,e in segments]
|
23 |
+
|
24 |
+
if len(segments) == 0:
|
25 |
+
segments = [(0, len(audio_vad)/SAMPLE_RATE)]
|
26 |
+
print(segments)
|
27 |
+
|
28 |
+
# spk
|
29 |
+
hps = vc.hps
|
30 |
+
device = vc.device
|
31 |
+
model = vc.model
|
32 |
+
gs = []
|
33 |
+
|
34 |
+
audio, sr = librosa.load(audio_path, sr=hps.data.sampling_rate)
|
35 |
+
audio = torch.tensor(audio).float().to(device)
|
36 |
+
|
37 |
+
for s, e in segments:
|
38 |
+
y = audio[int(hps.data.sampling_rate*s):int(hps.data.sampling_rate*e)]
|
39 |
+
y = y.to(device)
|
40 |
+
y = y.unsqueeze(0)
|
41 |
+
y = spectrogram_torch(y, hps.data.filter_length,
|
42 |
+
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
43 |
+
center=False).to(device)
|
44 |
+
g = model.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
45 |
+
gs.append(g.detach())
|
46 |
+
|
47 |
+
gs = torch.stack(gs).mean(0)
|
48 |
+
return gs.cpu()
|
dreamvoice/plugin.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import yaml
|
4 |
+
import torch
|
5 |
+
import librosa
|
6 |
+
import numpy as np
|
7 |
+
import soundfile as sf
|
8 |
+
from pathlib import Path
|
9 |
+
from transformers import T5Tokenizer, T5EncoderModel
|
10 |
+
from tqdm import tqdm
|
11 |
+
from .src.plugin_wrapper import DreamVG
|
12 |
+
|
13 |
+
|
14 |
+
class DreamVoice_Plugin:
|
15 |
+
def __init__(self, config='plugin.yaml', device='cuda'):
|
16 |
+
# Initial setup
|
17 |
+
script_dir = Path(__file__).resolve().parent
|
18 |
+
config_path = script_dir / config
|
19 |
+
|
20 |
+
# Load configuration file
|
21 |
+
with open(config_path, 'r') as fp:
|
22 |
+
self.config = yaml.safe_load(fp)
|
23 |
+
|
24 |
+
self.script_dir = script_dir
|
25 |
+
|
26 |
+
# Ensure all checkpoints are downloaded
|
27 |
+
self._ensure_checkpoints_exist()
|
28 |
+
|
29 |
+
# Initialize attributes
|
30 |
+
self.device = device
|
31 |
+
|
32 |
+
# Load tokenizer and text encoder
|
33 |
+
lm_path = self.config['lm_path']
|
34 |
+
self.tokenizer = T5Tokenizer.from_pretrained(lm_path)
|
35 |
+
self.text_encoder = T5EncoderModel.from_pretrained(lm_path).to(device).eval()
|
36 |
+
|
37 |
+
self.dreamvg = DreamVG(
|
38 |
+
config_path=self.script_dir / self.config['dreamvg']['config_path'],
|
39 |
+
ckpt_path=self.script_dir / self.config['dreamvg']['ckpt_path'],
|
40 |
+
device=self.device
|
41 |
+
|
42 |
+
)
|
43 |
+
def _ensure_checkpoints_exist(self):
|
44 |
+
checkpoints = [
|
45 |
+
('dreamvg.ckpt_path', self.config.get('dreamvg', {}).get('ckpt_url'))
|
46 |
+
]
|
47 |
+
|
48 |
+
for path_key, url in checkpoints:
|
49 |
+
local_path = self._get_local_path(path_key)
|
50 |
+
if not local_path.exists() and url:
|
51 |
+
print(f"Downloading {path_key} from {url}")
|
52 |
+
self._download_file(url, local_path)
|
53 |
+
|
54 |
+
def _get_local_path(self, path_key):
|
55 |
+
keys = path_key.split('.')
|
56 |
+
local_path = self.config
|
57 |
+
for key in keys:
|
58 |
+
local_path = local_path.get(key, {})
|
59 |
+
return self.script_dir / local_path
|
60 |
+
|
61 |
+
def _download_file(self, url, local_path):
|
62 |
+
try:
|
63 |
+
# Attempt to send a GET request to the URL
|
64 |
+
response = requests.get(url, stream=True)
|
65 |
+
response.raise_for_status() # Ensure we raise an exception for HTTP errors
|
66 |
+
except requests.exceptions.RequestException as e:
|
67 |
+
# Log the error for debugging purposes
|
68 |
+
print(f"Error encountered: {e}")
|
69 |
+
|
70 |
+
# Development mode: prompt user for Hugging Face API key
|
71 |
+
user_input = input("Private checkpoint, please request authorization and enter your Hugging Face API key.")
|
72 |
+
self.hf_key = user_input if user_input else None
|
73 |
+
|
74 |
+
# Set headers if an API key is provided
|
75 |
+
headers = {'Authorization': f'Bearer {self.hf_key}'} if self.hf_key else {}
|
76 |
+
|
77 |
+
try:
|
78 |
+
# Attempt to send a GET request with headers in development mode
|
79 |
+
response = requests.get(url, stream=True, headers=headers)
|
80 |
+
response.raise_for_status() # Ensure we raise an exception for HTTP errors
|
81 |
+
except requests.exceptions.RequestException as e:
|
82 |
+
# Log the error for debugging purposes
|
83 |
+
print(f"Error encountered in dev mode: {e}")
|
84 |
+
response = None # Handle response accordingly in your code
|
85 |
+
|
86 |
+
local_path.parent.mkdir(parents=True, exist_ok=True)
|
87 |
+
|
88 |
+
total_size = int(response.headers.get('content-length', 0))
|
89 |
+
block_size = 8192
|
90 |
+
t = tqdm(total=total_size, unit='iB', unit_scale=True)
|
91 |
+
|
92 |
+
with open(local_path, 'wb') as f:
|
93 |
+
for chunk in response.iter_content(chunk_size=block_size):
|
94 |
+
t.update(len(chunk))
|
95 |
+
f.write(chunk)
|
96 |
+
t.close()
|
97 |
+
|
98 |
+
def _init_plugin_mode(self):
|
99 |
+
# Initialize DreamVG
|
100 |
+
self.dreamvg = DreamVG(
|
101 |
+
config_path=self.script_dir / self.config['dreamvg']['config_path'],
|
102 |
+
ckpt_path=self.script_dir / self.config['dreamvg']['ckpt_path'],
|
103 |
+
device=self.device
|
104 |
+
)
|
105 |
+
|
106 |
+
# Load speaker encoder
|
107 |
+
spk_encoder.load_model(self.script_dir / self.config['speaker_path'], self.device)
|
108 |
+
self.spk_encoder = spk_encoder
|
109 |
+
self.spk_embed_cache = None
|
110 |
+
|
111 |
+
|
112 |
+
@torch.no_grad()
|
113 |
+
def gen_spk(self, prompt,
|
114 |
+
prompt_guidance_scale=3, prompt_guidance_rescale=0.0,
|
115 |
+
prompt_ddim_steps=100, prompt_eta=1, prompt_random_seed=None,):
|
116 |
+
|
117 |
+
text_batch = self.tokenizer(prompt, max_length=32,
|
118 |
+
padding='max_length', truncation=True, return_tensors="pt")
|
119 |
+
text, text_mask = text_batch.input_ids.to(self.device), \
|
120 |
+
text_batch.attention_mask.to(self.device)
|
121 |
+
text = self.text_encoder(input_ids=text, attention_mask=text_mask)[0]
|
122 |
+
|
123 |
+
spk_embed = self.dreamvg.inference([text, text_mask],
|
124 |
+
guidance_scale=prompt_guidance_scale,
|
125 |
+
guidance_rescale=prompt_guidance_rescale,
|
126 |
+
ddim_steps=prompt_ddim_steps, eta=prompt_eta,
|
127 |
+
random_seed=prompt_random_seed)
|
128 |
+
return spk_embed
|
dreamvoice/plugin.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.1
|
2 |
+
|
3 |
+
lm_path: 'google/flan-t5-base'
|
4 |
+
|
5 |
+
dreamvg:
|
6 |
+
config_path: 'src/configs/plugin_cross_openvoice.yaml'
|
7 |
+
ckpt_path: 'plugin_ckpts/openvoice_v2.pt'
|
8 |
+
ckpt_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/plugin_ckpts/openvoice_v2.pt'
|
dreamvoice/plugin_ckpts/openvoice_v2.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08eae6c5b5da6438451589f3657b3bfeedc3b80bed52948f9845b7d70e989ab1
|
3 |
+
size 104892189
|
dreamvoice/src/.ipynb_checkpoints/plugin_wrapper-checkpoint.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yaml
|
2 |
+
import torch
|
3 |
+
from diffusers import DDIMScheduler
|
4 |
+
from .model.p2e_cross import P2E_Cross
|
5 |
+
from .utils import scale_shift, scale_shift_re, rescale_noise_cfg
|
6 |
+
|
7 |
+
|
8 |
+
class DreamVG(object):
|
9 |
+
def __init__(self,
|
10 |
+
config_path='configs/plugin_cross.yaml',
|
11 |
+
ckpt_path='../ckpts/dreamvc_plugin.pt',
|
12 |
+
device='cpu'):
|
13 |
+
|
14 |
+
with open(config_path, 'r') as fp:
|
15 |
+
config = yaml.safe_load(fp)
|
16 |
+
|
17 |
+
self.device = device
|
18 |
+
self.model = P2E_Cross(config['model']).to(device)
|
19 |
+
self.model.load_state_dict(torch.load(ckpt_path)['model'])
|
20 |
+
self.model.eval()
|
21 |
+
|
22 |
+
noise_scheduler = DDIMScheduler(num_train_timesteps=config['scheduler']['num_train_steps'],
|
23 |
+
beta_start=config['scheduler']['beta_start'],
|
24 |
+
beta_end=config['scheduler']['beta_end'],
|
25 |
+
rescale_betas_zero_snr=True,
|
26 |
+
timestep_spacing="trailing",
|
27 |
+
clip_sample=False,
|
28 |
+
prediction_type='v_prediction')
|
29 |
+
self.noise_scheduler = noise_scheduler
|
30 |
+
self.scale = config['scheduler']['scale']
|
31 |
+
self.shift = config['scheduler']['shift']
|
32 |
+
self.spk_shape = config['model']['unet']['in_channels']
|
33 |
+
|
34 |
+
@torch.no_grad()
|
35 |
+
def inference(self, text,
|
36 |
+
guidance_scale=5, guidance_rescale=0.7,
|
37 |
+
ddim_steps=50, eta=1, random_seed=2023,
|
38 |
+
):
|
39 |
+
text, text_mask = text
|
40 |
+
self.model.eval()
|
41 |
+
|
42 |
+
gen_shape = (1, self.spk_shape)
|
43 |
+
|
44 |
+
if random_seed is not None:
|
45 |
+
generator = torch.Generator(device=self.device).manual_seed(random_seed)
|
46 |
+
else:
|
47 |
+
generator = torch.Generator(device=self.device)
|
48 |
+
generator.seed()
|
49 |
+
|
50 |
+
self.noise_scheduler.set_timesteps(ddim_steps)
|
51 |
+
|
52 |
+
# init noise
|
53 |
+
noise = torch.randn(gen_shape, generator=generator, device=self.device)
|
54 |
+
latents = noise
|
55 |
+
|
56 |
+
for t in self.noise_scheduler.timesteps:
|
57 |
+
latents = self.noise_scheduler.scale_model_input(latents, t)
|
58 |
+
|
59 |
+
if guidance_scale:
|
60 |
+
output_text = self.model(latents, t, text, text_mask, train_cfg=False)
|
61 |
+
output_uncond = self.model(latents, t, text, text_mask, train_cfg=True, cfg_prob=1.0)
|
62 |
+
|
63 |
+
output_pred = output_uncond + guidance_scale * (output_text - output_uncond)
|
64 |
+
if guidance_rescale > 0.0:
|
65 |
+
output_pred = rescale_noise_cfg(output_pred, output_text,
|
66 |
+
guidance_rescale=guidance_rescale)
|
67 |
+
else:
|
68 |
+
output_pred = self.model(latents, t, text, text_mask, train_cfg=False)
|
69 |
+
|
70 |
+
latents = self.noise_scheduler.step(model_output=output_pred, timestep=t, sample=latents,
|
71 |
+
eta=eta, generator=generator).prev_sample
|
72 |
+
|
73 |
+
# pred = reverse_minmax_norm_diff(latents, vmin=0.0, vmax=0.5)
|
74 |
+
pred = scale_shift_re(latents, 1/self.scale, self.shift)
|
75 |
+
# pred = torch.clip(pred, min=0.0, max=0.5)
|
76 |
+
return pred
|
dreamvoice/src/.ipynb_checkpoints/vc_wrapper-checkpoint.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yaml
|
2 |
+
import torch
|
3 |
+
from diffusers import DDIMScheduler
|
4 |
+
from .model.model import DiffVC
|
5 |
+
from .model.model_cross import DiffVC_Cross
|
6 |
+
from .utils import scale_shift, scale_shift_re, rescale_noise_cfg
|
7 |
+
|
8 |
+
|
9 |
+
class ReDiffVC(object):
|
10 |
+
def __init__(self,
|
11 |
+
config_path='configs/diffvc_base.yaml',
|
12 |
+
ckpt_path='../ckpts/dreamvc_base.pt',
|
13 |
+
device='cpu'):
|
14 |
+
|
15 |
+
with open(config_path, 'r') as fp:
|
16 |
+
config = yaml.safe_load(fp)
|
17 |
+
|
18 |
+
self.device = device
|
19 |
+
self.model = DiffVC(config['model']).to(device)
|
20 |
+
self.model.load_state_dict(torch.load(ckpt_path)['model'])
|
21 |
+
self.model.eval()
|
22 |
+
|
23 |
+
noise_scheduler = DDIMScheduler(num_train_timesteps=config['scheduler']['num_train_steps'],
|
24 |
+
beta_start=config['scheduler']['beta_start'],
|
25 |
+
beta_end=config['scheduler']['beta_end'],
|
26 |
+
rescale_betas_zero_snr=True,
|
27 |
+
timestep_spacing="trailing",
|
28 |
+
clip_sample=False,
|
29 |
+
prediction_type='v_prediction')
|
30 |
+
self.noise_scheduler = noise_scheduler
|
31 |
+
self.scale = config['scheduler']['scale']
|
32 |
+
self.shift = config['scheduler']['shift']
|
33 |
+
self.melshape = config['model']['unet']['sample_size'][0]
|
34 |
+
|
35 |
+
@torch.no_grad()
|
36 |
+
def inference(self,
|
37 |
+
spk_embed, content_clip, f0_clip=None,
|
38 |
+
guidance_scale=3, guidance_rescale=0.7,
|
39 |
+
ddim_steps=50, eta=1, random_seed=2023):
|
40 |
+
|
41 |
+
self.model.eval()
|
42 |
+
if random_seed is not None:
|
43 |
+
generator = torch.Generator(device=self.device).manual_seed(random_seed)
|
44 |
+
else:
|
45 |
+
generator = torch.Generator(device=self.device)
|
46 |
+
generator.seed()
|
47 |
+
|
48 |
+
self.noise_scheduler.set_timesteps(ddim_steps)
|
49 |
+
|
50 |
+
# init noise
|
51 |
+
gen_shape = (1, 1, self.melshape, content_clip.shape[-2])
|
52 |
+
noise = torch.randn(gen_shape, generator=generator, device=self.device)
|
53 |
+
latents = noise
|
54 |
+
|
55 |
+
for t in self.noise_scheduler.timesteps:
|
56 |
+
latents = self.noise_scheduler.scale_model_input(latents, t)
|
57 |
+
|
58 |
+
if guidance_scale:
|
59 |
+
output_text = self.model(latents, t, content_clip, spk_embed, f0_clip, train_cfg=False)
|
60 |
+
output_uncond = self.model(latents, t, content_clip, spk_embed, f0_clip, train_cfg=True,
|
61 |
+
speaker_cfg=1.0, pitch_cfg=0.0)
|
62 |
+
|
63 |
+
output_pred = output_uncond + guidance_scale * (output_text - output_uncond)
|
64 |
+
if guidance_rescale > 0.0:
|
65 |
+
output_pred = rescale_noise_cfg(output_pred, output_text,
|
66 |
+
guidance_rescale=guidance_rescale)
|
67 |
+
else:
|
68 |
+
output_pred = self.model(latents, t, content_clip, spk_embed, f0_clip, train_cfg=False)
|
69 |
+
|
70 |
+
latents = self.noise_scheduler.step(model_output=output_pred, timestep=t, sample=latents,
|
71 |
+
eta=eta, generator=generator).prev_sample
|
72 |
+
|
73 |
+
pred = scale_shift_re(latents, scale=1/self.scale, shift=self.shift)
|
74 |
+
return pred
|
75 |
+
|
76 |
+
|
77 |
+
class DreamVC(object):
|
78 |
+
def __init__(self,
|
79 |
+
config_path='configs/diffvc_cross.yaml',
|
80 |
+
ckpt_path='../ckpts/dreamvc_cross.pt',
|
81 |
+
device='cpu'):
|
82 |
+
|
83 |
+
with open(config_path, 'r') as fp:
|
84 |
+
config = yaml.safe_load(fp)
|
85 |
+
|
86 |
+
self.device = device
|
87 |
+
self.model = DiffVC_Cross(config['model']).to(device)
|
88 |
+
self.model.load_state_dict(torch.load(ckpt_path)['model'])
|
89 |
+
self.model.eval()
|
90 |
+
|
91 |
+
noise_scheduler = DDIMScheduler(num_train_timesteps=config['scheduler']['num_train_steps'],
|
92 |
+
beta_start=config['scheduler']['beta_start'],
|
93 |
+
beta_end=config['scheduler']['beta_end'],
|
94 |
+
rescale_betas_zero_snr=True,
|
95 |
+
timestep_spacing="trailing",
|
96 |
+
clip_sample=False,
|
97 |
+
prediction_type='v_prediction')
|
98 |
+
self.noise_scheduler = noise_scheduler
|
99 |
+
self.scale = config['scheduler']['scale']
|
100 |
+
self.shift = config['scheduler']['shift']
|
101 |
+
self.melshape = config['model']['unet']['sample_size'][0]
|
102 |
+
|
103 |
+
@torch.no_grad()
|
104 |
+
def inference(self,
|
105 |
+
text, content_clip, f0_clip=None,
|
106 |
+
guidance_scale=3, guidance_rescale=0.7,
|
107 |
+
ddim_steps=50, eta=1, random_seed=2023):
|
108 |
+
|
109 |
+
text, text_mask = text
|
110 |
+
self.model.eval()
|
111 |
+
if random_seed is not None:
|
112 |
+
generator = torch.Generator(device=self.device).manual_seed(random_seed)
|
113 |
+
else:
|
114 |
+
generator = torch.Generator(device=self.device)
|
115 |
+
generator.seed()
|
116 |
+
|
117 |
+
self.noise_scheduler.set_timesteps(ddim_steps)
|
118 |
+
|
119 |
+
# init noise
|
120 |
+
gen_shape = (1, 1, self.melshape, content_clip.shape[-2])
|
121 |
+
noise = torch.randn(gen_shape, generator=generator, device=self.device)
|
122 |
+
latents = noise
|
123 |
+
|
124 |
+
for t in self.noise_scheduler.timesteps:
|
125 |
+
latents = self.noise_scheduler.scale_model_input(latents, t)
|
126 |
+
|
127 |
+
if guidance_scale:
|
128 |
+
output_text = self.model(latents, t, content_clip, text, text_mask, f0_clip, train_cfg=False)
|
129 |
+
output_uncond = self.model(latents, t, content_clip, text, text_mask, f0_clip, train_cfg=True,
|
130 |
+
speaker_cfg=1.0, pitch_cfg=0.0)
|
131 |
+
|
132 |
+
output_pred = output_uncond + guidance_scale * (output_text - output_uncond)
|
133 |
+
if guidance_rescale > 0.0:
|
134 |
+
output_pred = rescale_noise_cfg(output_pred, output_text,
|
135 |
+
guidance_rescale=guidance_rescale)
|
136 |
+
else:
|
137 |
+
output_pred = self.model(latents, t, content_clip, text, text_mask, f0_clip, train_cfg=False)
|
138 |
+
|
139 |
+
latents = self.noise_scheduler.step(model_output=output_pred, timestep=t, sample=latents,
|
140 |
+
eta=eta, generator=generator).prev_sample
|
141 |
+
|
142 |
+
pred = scale_shift_re(latents, scale=1/self.scale, shift=self.shift)
|
143 |
+
return pred
|
144 |
+
|
dreamvoice/src/__pycache__/plugin_wrapper.cpython-310.pyc
ADDED
Binary file (2.4 kB). View file
|
|
dreamvoice/src/__pycache__/vc_wrapper.cpython-310.pyc
ADDED
Binary file (3.49 kB). View file
|
|
dreamvoice/src/configs/.ipynb_checkpoints/plugin_cross-checkpoint.yaml
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.0
|
2 |
+
|
3 |
+
system: "cross"
|
4 |
+
|
5 |
+
model:
|
6 |
+
cls_embedding:
|
7 |
+
content_dim: 768
|
8 |
+
content_hidden: 256
|
9 |
+
|
10 |
+
unet:
|
11 |
+
sample_size: [1, 1]
|
12 |
+
in_channels: 256
|
13 |
+
out_channels: 256
|
14 |
+
layers_per_block: 2
|
15 |
+
block_out_channels: [256]
|
16 |
+
down_block_types:
|
17 |
+
[
|
18 |
+
"CrossAttnDownBlock2D",
|
19 |
+
]
|
20 |
+
up_block_types:
|
21 |
+
[
|
22 |
+
"CrossAttnUpBlock2D",
|
23 |
+
]
|
24 |
+
attention_head_dim: 32
|
25 |
+
cross_attention_dim: 768
|
26 |
+
|
27 |
+
scheduler:
|
28 |
+
num_train_steps: 1000
|
29 |
+
beta_schedule: 'linear'
|
30 |
+
beta_start: 0.0001
|
31 |
+
beta_end: 0.02
|
32 |
+
num_infer_steps: 50
|
33 |
+
rescale_betas_zero_snr: true
|
34 |
+
timestep_spacing: "trailing"
|
35 |
+
clip_sample: false
|
36 |
+
prediction_type: 'v_prediction'
|
37 |
+
scale: 0.05
|
38 |
+
shift: -0.035
|
39 |
+
|
dreamvoice/src/configs/.ipynb_checkpoints/plugin_cross_openvoice-checkpoint.yaml
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.0
|
2 |
+
|
3 |
+
system: "cross"
|
4 |
+
|
5 |
+
model:
|
6 |
+
cls_embedding:
|
7 |
+
content_dim: 768
|
8 |
+
content_hidden: 256
|
9 |
+
|
10 |
+
unet:
|
11 |
+
sample_size: [1, 1]
|
12 |
+
in_channels: 256
|
13 |
+
out_channels: 256
|
14 |
+
layers_per_block: 2
|
15 |
+
block_out_channels: [256]
|
16 |
+
down_block_types:
|
17 |
+
[
|
18 |
+
"CrossAttnDownBlock2D",
|
19 |
+
]
|
20 |
+
up_block_types:
|
21 |
+
[
|
22 |
+
"CrossAttnUpBlock2D",
|
23 |
+
]
|
24 |
+
attention_head_dim: 32
|
25 |
+
cross_attention_dim: 768
|
26 |
+
|
27 |
+
scheduler:
|
28 |
+
num_train_steps: 1000
|
29 |
+
beta_schedule: 'linear'
|
30 |
+
beta_start: 0.0001
|
31 |
+
beta_end: 0.02
|
32 |
+
num_infer_steps: 50
|
33 |
+
rescale_betas_zero_snr: true
|
34 |
+
timestep_spacing: "trailing"
|
35 |
+
clip_sample: false
|
36 |
+
prediction_type: 'v_prediction'
|
37 |
+
scale: 1.0
|
38 |
+
shift: 0.0
|
39 |
+
|
dreamvoice/src/configs/plugin_cross_openvoice.yaml
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.0
|
2 |
+
|
3 |
+
system: "cross"
|
4 |
+
|
5 |
+
model:
|
6 |
+
cls_embedding:
|
7 |
+
content_dim: 768
|
8 |
+
content_hidden: 256
|
9 |
+
|
10 |
+
unet:
|
11 |
+
sample_size: [1, 1]
|
12 |
+
in_channels: 256
|
13 |
+
out_channels: 256
|
14 |
+
layers_per_block: 2
|
15 |
+
block_out_channels: [256]
|
16 |
+
down_block_types:
|
17 |
+
[
|
18 |
+
"CrossAttnDownBlock2D",
|
19 |
+
]
|
20 |
+
up_block_types:
|
21 |
+
[
|
22 |
+
"CrossAttnUpBlock2D",
|
23 |
+
]
|
24 |
+
attention_head_dim: 32
|
25 |
+
cross_attention_dim: 768
|
26 |
+
|
27 |
+
scheduler:
|
28 |
+
num_train_steps: 1000
|
29 |
+
beta_schedule: 'linear'
|
30 |
+
beta_start: 0.0001
|
31 |
+
beta_end: 0.02
|
32 |
+
num_infer_steps: 50
|
33 |
+
rescale_betas_zero_snr: true
|
34 |
+
timestep_spacing: "trailing"
|
35 |
+
clip_sample: false
|
36 |
+
prediction_type: 'v_prediction'
|
37 |
+
scale: 1.0
|
38 |
+
shift: 0.0
|
39 |
+
|
dreamvoice/src/feats/__pycache__/contentvec_hf.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/feats/__pycache__/contentvec_hf.cpython-310.pyc and b/dreamvoice/src/feats/__pycache__/contentvec_hf.cpython-310.pyc differ
|
|
dreamvoice/src/model/__pycache__/model.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/model/__pycache__/model.cpython-310.pyc and b/dreamvoice/src/model/__pycache__/model.cpython-310.pyc differ
|
|
dreamvoice/src/model/__pycache__/model_cross.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/model/__pycache__/model_cross.cpython-310.pyc and b/dreamvoice/src/model/__pycache__/model_cross.cpython-310.pyc differ
|
|
dreamvoice/src/model/__pycache__/p2e_cross.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/model/__pycache__/p2e_cross.cpython-310.pyc and b/dreamvoice/src/model/__pycache__/p2e_cross.cpython-310.pyc differ
|
|
dreamvoice/src/modules/BigVGAN/__pycache__/env.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/modules/BigVGAN/__pycache__/env.cpython-310.pyc and b/dreamvoice/src/modules/BigVGAN/__pycache__/env.cpython-310.pyc differ
|
|
dreamvoice/src/modules/BigVGAN/__pycache__/inference.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/modules/BigVGAN/__pycache__/inference.cpython-310.pyc and b/dreamvoice/src/modules/BigVGAN/__pycache__/inference.cpython-310.pyc differ
|
|
dreamvoice/src/modules/BigVGAN/__pycache__/models.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/modules/BigVGAN/__pycache__/models.cpython-310.pyc and b/dreamvoice/src/modules/BigVGAN/__pycache__/models.cpython-310.pyc differ
|
|
dreamvoice/src/modules/BigVGAN/__pycache__/utils.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/modules/BigVGAN/__pycache__/utils.cpython-310.pyc and b/dreamvoice/src/modules/BigVGAN/__pycache__/utils.cpython-310.pyc differ
|
|
dreamvoice/src/modules/BigVGAN/activations/__pycache__/activations.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/modules/BigVGAN/activations/__pycache__/activations.cpython-310.pyc and b/dreamvoice/src/modules/BigVGAN/activations/__pycache__/activations.cpython-310.pyc differ
|
|
dreamvoice/src/modules/BigVGAN/alias_free_torch/__pycache__/__init__.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/modules/BigVGAN/alias_free_torch/__pycache__/__init__.cpython-310.pyc and b/dreamvoice/src/modules/BigVGAN/alias_free_torch/__pycache__/__init__.cpython-310.pyc differ
|
|
dreamvoice/src/modules/BigVGAN/alias_free_torch/__pycache__/act.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/modules/BigVGAN/alias_free_torch/__pycache__/act.cpython-310.pyc and b/dreamvoice/src/modules/BigVGAN/alias_free_torch/__pycache__/act.cpython-310.pyc differ
|
|
dreamvoice/src/modules/BigVGAN/alias_free_torch/__pycache__/filter.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/modules/BigVGAN/alias_free_torch/__pycache__/filter.cpython-310.pyc and b/dreamvoice/src/modules/BigVGAN/alias_free_torch/__pycache__/filter.cpython-310.pyc differ
|
|
dreamvoice/src/modules/BigVGAN/alias_free_torch/__pycache__/resample.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/modules/BigVGAN/alias_free_torch/__pycache__/resample.cpython-310.pyc and b/dreamvoice/src/modules/BigVGAN/alias_free_torch/__pycache__/resample.cpython-310.pyc differ
|
|
dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/__init__.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/__init__.cpython-310.pyc and b/dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/__init__.cpython-310.pyc differ
|
|
dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/audio.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/audio.cpython-310.pyc and b/dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/audio.cpython-310.pyc differ
|
|
dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/inference.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/inference.cpython-310.pyc and b/dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/inference.cpython-310.pyc differ
|
|
dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/model.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/model.cpython-310.pyc and b/dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/model.cpython-310.pyc differ
|
|
dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/params_data.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/params_data.cpython-310.pyc and b/dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/params_data.cpython-310.pyc differ
|
|
dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/params_model.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/params_model.cpython-310.pyc and b/dreamvoice/src/modules/speaker_encoder/encoder/__pycache__/params_model.cpython-310.pyc differ
|
|
dreamvoice/src/train_plugin.py
DELETED
File without changes
|
dreamvoice/src/train_vc.py
DELETED
File without changes
|
dreamvoice/src/utils/__pycache__/__init__.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/utils/__pycache__/__init__.cpython-310.pyc and b/dreamvoice/src/utils/__pycache__/__init__.cpython-310.pyc differ
|
|
dreamvoice/src/utils/__pycache__/utils.cpython-310.pyc
CHANGED
Binary files a/dreamvoice/src/utils/__pycache__/utils.cpython-310.pyc and b/dreamvoice/src/utils/__pycache__/utils.cpython-310.pyc differ
|
|