Merge branch 'main' of https://huggingface.co/myshell-ai/DreamVoice into main
Browse files- dreamvoice/.ipynb_checkpoints/__init__-checkpoint.py +0 -2
- dreamvoice/.ipynb_checkpoints/api-checkpoint.py +0 -295
- dreamvoice/.ipynb_checkpoints/dreamvc-checkpoint.yaml +0 -27
- dreamvoice/.ipynb_checkpoints/openvoice_utils-checkpoint.py +0 -48
- dreamvoice/.ipynb_checkpoints/plugin-checkpoint.py +0 -128
- dreamvoice/.ipynb_checkpoints/plugin-checkpoint.yaml +0 -8
- dreamvoice/__pycache__/__init__.cpython-310.pyc +0 -0
- dreamvoice/__pycache__/api.cpython-310.pyc +0 -0
- dreamvoice/__pycache__/openvoice_utils.cpython-310.pyc +0 -0
- dreamvoice/__pycache__/plugin.cpython-310.pyc +0 -0
- dreamvoice/src/.ipynb_checkpoints/plugin_wrapper-checkpoint.py +0 -76
- dreamvoice/src/.ipynb_checkpoints/vc_wrapper-checkpoint.py +0 -144
- dreamvoice/src/__pycache__/plugin_wrapper.cpython-310.pyc +0 -0
- dreamvoice/src/__pycache__/vc_wrapper.cpython-310.pyc +0 -0
- dreamvoice/src/configs/.ipynb_checkpoints/plugin_cross-checkpoint.yaml +0 -39
- dreamvoice/src/configs/.ipynb_checkpoints/plugin_cross_openvoice-checkpoint.yaml +0 -39
- dreamvoice/src/feats/.ipynb_checkpoints/contentvec-checkpoint.py +0 -42
- dreamvoice/src/feats/.ipynb_checkpoints/contentvec_hf-checkpoint.py +0 -40
- dreamvoice/src/feats/.ipynb_checkpoints/hubert_model-checkpoint.py +0 -24
- dreamvoice/src/feats/.ipynb_checkpoints/test-checkpoint.py +0 -22
- dreamvoice/src/feats/__pycache__/contentvec.cpython-310.pyc +0 -0
- dreamvoice/src/feats/__pycache__/contentvec.cpython-311.pyc +0 -0
- dreamvoice/src/feats/__pycache__/contentvec_hf.cpython-310.pyc +0 -0
- dreamvoice/src/feats/__pycache__/contentvec_hf.cpython-311.pyc +0 -0
- dreamvoice/src/feats/__pycache__/hubert_model.cpython-311.pyc +0 -0
- dreamvoice/src/model/.ipynb_checkpoints/model-checkpoint.py +0 -98
- dreamvoice/src/model/.ipynb_checkpoints/model_cross-checkpoint.py +0 -116
- dreamvoice/src/model/.ipynb_checkpoints/p2e_cross-checkpoint.py +0 -80
- dreamvoice/src/model/__pycache__/model.cpython-310.pyc +0 -0
- dreamvoice/src/model/__pycache__/model.cpython-311.pyc +0 -0
- dreamvoice/src/model/__pycache__/model_cross.cpython-310.pyc +0 -0
- dreamvoice/src/model/__pycache__/model_cross.cpython-311.pyc +0 -0
- dreamvoice/src/model/__pycache__/model_cross.cpython-39.pyc +0 -0
- dreamvoice/src/model/__pycache__/p2e_cross.cpython-310.pyc +0 -0
- dreamvoice/src/model/__pycache__/p2e_cross.cpython-311.pyc +0 -0
- dreamvoice/src/modules/.ipynb_checkpoints/mel-checkpoint.py +0 -37
- dreamvoice/src/utils/.ipynb_checkpoints/__init__-checkpoint.py +0 -1
- dreamvoice/src/utils/.ipynb_checkpoints/utils-checkpoint.py +0 -76
- dreamvoice/src/utils/__pycache__/__init__.cpython-310.pyc +0 -0
- dreamvoice/src/utils/__pycache__/__init__.cpython-311.pyc +0 -0
- dreamvoice/src/utils/__pycache__/utils.cpython-310.pyc +0 -0
- dreamvoice/src/utils/__pycache__/utils.cpython-311.pyc +0 -0
dreamvoice/.ipynb_checkpoints/__init__-checkpoint.py
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
from .api import DreamVoice
|
2 |
-
from .plugin import DreamVoice_Plugin
|
|
|
|
|
|
dreamvoice/.ipynb_checkpoints/api-checkpoint.py
DELETED
@@ -1,295 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import requests
|
3 |
-
import yaml
|
4 |
-
import torch
|
5 |
-
import librosa
|
6 |
-
import numpy as np
|
7 |
-
import soundfile as sf
|
8 |
-
from pathlib import Path
|
9 |
-
from transformers import T5Tokenizer, T5EncoderModel
|
10 |
-
from tqdm import tqdm
|
11 |
-
from .src.vc_wrapper import ReDiffVC, DreamVC
|
12 |
-
from .src.plugin_wrapper import DreamVG
|
13 |
-
from .src.modules.speaker_encoder.encoder import inference as spk_encoder
|
14 |
-
from .src.modules.BigVGAN.inference import load_model as load_vocoder
|
15 |
-
from .src.feats.contentvec_hf import get_content_model, get_content
|
16 |
-
|
17 |
-
|
18 |
-
class DreamVoice:
|
19 |
-
def __init__(self, config='dreamvc.yaml', mode='plugin', device='cuda', chunk_size=16):
|
20 |
-
# Initial setup
|
21 |
-
script_dir = Path(__file__).resolve().parent
|
22 |
-
config_path = script_dir / config
|
23 |
-
|
24 |
-
# Load configuration file
|
25 |
-
with open(config_path, 'r') as fp:
|
26 |
-
self.config = yaml.safe_load(fp)
|
27 |
-
|
28 |
-
self.script_dir = script_dir
|
29 |
-
|
30 |
-
# Ensure all checkpoints are downloaded
|
31 |
-
self._ensure_checkpoints_exist()
|
32 |
-
|
33 |
-
# Initialize attributes
|
34 |
-
self.device = device
|
35 |
-
self.sr = self.config['sample_rate']
|
36 |
-
|
37 |
-
# Load vocoder
|
38 |
-
vocoder_path = script_dir / self.config['vocoder_path']
|
39 |
-
self.hifigan, _ = load_vocoder(vocoder_path, device)
|
40 |
-
self.hifigan.eval()
|
41 |
-
|
42 |
-
# Load content model
|
43 |
-
self.content_model = get_content_model().to(device)
|
44 |
-
|
45 |
-
# Load tokenizer and text encoder
|
46 |
-
lm_path = self.config['lm_path']
|
47 |
-
self.tokenizer = T5Tokenizer.from_pretrained(lm_path)
|
48 |
-
self.text_encoder = T5EncoderModel.from_pretrained(lm_path).to(device).eval()
|
49 |
-
|
50 |
-
# Set mode
|
51 |
-
self.mode = mode
|
52 |
-
if mode == 'plugin':
|
53 |
-
self._init_plugin_mode()
|
54 |
-
elif mode == 'end2end':
|
55 |
-
self._init_end2end_mode()
|
56 |
-
else:
|
57 |
-
raise NotImplementedError("Select mode from 'plugin' and 'end2end'")
|
58 |
-
|
59 |
-
# chunk inputs to 10s clips
|
60 |
-
self.chunk_size = chunk_size * 50
|
61 |
-
|
62 |
-
def _ensure_checkpoints_exist(self):
|
63 |
-
checkpoints = [
|
64 |
-
('vocoder_path', self.config.get('vocoder_url')),
|
65 |
-
('vocoder_config_path', self.config.get('vocoder_config_url')),
|
66 |
-
('speaker_path', self.config.get('speaker_url')),
|
67 |
-
('dreamvc.ckpt_path', self.config.get('dreamvc', {}).get('ckpt_url')),
|
68 |
-
('rediffvc.ckpt_path', self.config.get('rediffvc', {}).get('ckpt_url')),
|
69 |
-
('dreamvg.ckpt_path', self.config.get('dreamvg', {}).get('ckpt_url'))
|
70 |
-
]
|
71 |
-
|
72 |
-
for path_key, url in checkpoints:
|
73 |
-
local_path = self._get_local_path(path_key)
|
74 |
-
if not local_path.exists() and url:
|
75 |
-
print(f"Downloading {path_key} from {url}")
|
76 |
-
self._download_file(url, local_path)
|
77 |
-
|
78 |
-
def _get_local_path(self, path_key):
|
79 |
-
keys = path_key.split('.')
|
80 |
-
local_path = self.config
|
81 |
-
for key in keys:
|
82 |
-
local_path = local_path.get(key, {})
|
83 |
-
return self.script_dir / local_path
|
84 |
-
|
85 |
-
def _download_file(self, url, local_path):
|
86 |
-
try:
|
87 |
-
# Attempt to send a GET request to the URL
|
88 |
-
response = requests.get(url, stream=True)
|
89 |
-
response.raise_for_status() # Ensure we raise an exception for HTTP errors
|
90 |
-
except requests.exceptions.RequestException as e:
|
91 |
-
# Log the error for debugging purposes
|
92 |
-
print(f"Error encountered: {e}")
|
93 |
-
|
94 |
-
# Development mode: prompt user for Hugging Face API key
|
95 |
-
user_input = input("Private checkpoint, please request authorization and enter your Hugging Face API key.")
|
96 |
-
self.hf_key = user_input if user_input else None
|
97 |
-
|
98 |
-
# Set headers if an API key is provided
|
99 |
-
headers = {'Authorization': f'Bearer {self.hf_key}'} if self.hf_key else {}
|
100 |
-
|
101 |
-
try:
|
102 |
-
# Attempt to send a GET request with headers in development mode
|
103 |
-
response = requests.get(url, stream=True, headers=headers)
|
104 |
-
response.raise_for_status() # Ensure we raise an exception for HTTP errors
|
105 |
-
except requests.exceptions.RequestException as e:
|
106 |
-
# Log the error for debugging purposes
|
107 |
-
print(f"Error encountered in dev mode: {e}")
|
108 |
-
response = None # Handle response accordingly in your code
|
109 |
-
|
110 |
-
local_path.parent.mkdir(parents=True, exist_ok=True)
|
111 |
-
|
112 |
-
total_size = int(response.headers.get('content-length', 0))
|
113 |
-
block_size = 8192
|
114 |
-
t = tqdm(total=total_size, unit='iB', unit_scale=True)
|
115 |
-
|
116 |
-
with open(local_path, 'wb') as f:
|
117 |
-
for chunk in response.iter_content(chunk_size=block_size):
|
118 |
-
t.update(len(chunk))
|
119 |
-
f.write(chunk)
|
120 |
-
t.close()
|
121 |
-
|
122 |
-
def _init_plugin_mode(self):
|
123 |
-
# Initialize ReDiffVC
|
124 |
-
self.dreamvc = ReDiffVC(
|
125 |
-
config_path=self.script_dir / self.config['rediffvc']['config_path'],
|
126 |
-
ckpt_path=self.script_dir / self.config['rediffvc']['ckpt_path'],
|
127 |
-
device=self.device
|
128 |
-
)
|
129 |
-
|
130 |
-
# Initialize DreamVG
|
131 |
-
self.dreamvg = DreamVG(
|
132 |
-
config_path=self.script_dir / self.config['dreamvg']['config_path'],
|
133 |
-
ckpt_path=self.script_dir / self.config['dreamvg']['ckpt_path'],
|
134 |
-
device=self.device
|
135 |
-
)
|
136 |
-
|
137 |
-
# Load speaker encoder
|
138 |
-
spk_encoder.load_model(self.script_dir / self.config['speaker_path'], self.device)
|
139 |
-
self.spk_encoder = spk_encoder
|
140 |
-
self.spk_embed_cache = None
|
141 |
-
|
142 |
-
def _init_end2end_mode(self):
|
143 |
-
# Initialize DreamVC
|
144 |
-
self.dreamvc = DreamVC(
|
145 |
-
config_path=self.script_dir / self.config['dreamvc']['config_path'],
|
146 |
-
ckpt_path=self.script_dir / self.config['dreamvc']['ckpt_path'],
|
147 |
-
device=self.device
|
148 |
-
)
|
149 |
-
|
150 |
-
def _load_content(self, audio_path):
|
151 |
-
content_audio, _ = librosa.load(audio_path, sr=16000)
|
152 |
-
# Calculate the required length to make it a multiple of 16*160
|
153 |
-
target_length = ((len(content_audio) + 16*160 - 1) // (16*160)) * (16*160)
|
154 |
-
# Pad with zeros if necessary
|
155 |
-
if len(content_audio) < target_length:
|
156 |
-
content_audio = np.pad(content_audio, (0, target_length - len(content_audio)), mode='constant')
|
157 |
-
content_audio = torch.tensor(content_audio).unsqueeze(0).to(self.device)
|
158 |
-
content_clip = get_content(self.content_model, content_audio)
|
159 |
-
return content_clip
|
160 |
-
|
161 |
-
def load_spk_embed(self, emb_path):
|
162 |
-
self.spk_embed_cache = torch.load(emb_path, map_location=self.device)
|
163 |
-
|
164 |
-
def save_spk_embed(self, emb_path):
|
165 |
-
assert self.spk_embed_cache is not None
|
166 |
-
torch.save(self.spk_embed_cache.cpu(), emb_path)
|
167 |
-
|
168 |
-
def save_audio(self, output_path, audio, sr):
|
169 |
-
sf.write(output_path, audio, samplerate=sr)
|
170 |
-
|
171 |
-
@torch.no_grad()
|
172 |
-
def genvc(self, content_audio, prompt,
|
173 |
-
prompt_guidance_scale=3, prompt_guidance_rescale=0.0,
|
174 |
-
prompt_ddim_steps=100, prompt_eta=1, prompt_random_seed=None,
|
175 |
-
vc_guidance_scale=3, vc_guidance_rescale=0.0,
|
176 |
-
vc_ddim_steps=50, vc_eta=1, vc_random_seed=None,
|
177 |
-
):
|
178 |
-
|
179 |
-
content_clip = self._load_content(content_audio)
|
180 |
-
|
181 |
-
text_batch = self.tokenizer(prompt, max_length=32,
|
182 |
-
padding='max_length', truncation=True, return_tensors="pt")
|
183 |
-
text, text_mask = text_batch.input_ids.to(self.device), \
|
184 |
-
text_batch.attention_mask.to(self.device)
|
185 |
-
text = self.text_encoder(input_ids=text, attention_mask=text_mask)[0]
|
186 |
-
|
187 |
-
if self.mode == 'plugin':
|
188 |
-
spk_embed = self.dreamvg.inference([text, text_mask],
|
189 |
-
guidance_scale=prompt_guidance_scale,
|
190 |
-
guidance_rescale=prompt_guidance_rescale,
|
191 |
-
ddim_steps=prompt_ddim_steps, eta=prompt_eta,
|
192 |
-
random_seed=prompt_random_seed)
|
193 |
-
|
194 |
-
B, L, D = content_clip.shape
|
195 |
-
gen_audio_chunks = []
|
196 |
-
num_chunks = (L + self.chunk_size - 1) // self.chunk_size
|
197 |
-
for i in range(num_chunks):
|
198 |
-
start_idx = i * self.chunk_size
|
199 |
-
end_idx = min((i + 1) * self.chunk_size, L)
|
200 |
-
content_clip_chunk = content_clip[:, start_idx:end_idx, :]
|
201 |
-
|
202 |
-
gen_audio_chunk = self.dreamvc.inference(
|
203 |
-
spk_embed, content_clip_chunk, None,
|
204 |
-
guidance_scale=vc_guidance_scale,
|
205 |
-
guidance_rescale=vc_guidance_rescale,
|
206 |
-
ddim_steps=vc_ddim_steps,
|
207 |
-
eta=vc_eta,
|
208 |
-
random_seed=vc_random_seed)
|
209 |
-
|
210 |
-
gen_audio_chunks.append(gen_audio_chunk)
|
211 |
-
|
212 |
-
gen_audio = torch.cat(gen_audio_chunks, dim=-1)
|
213 |
-
|
214 |
-
self.spk_embed_cache = spk_embed
|
215 |
-
|
216 |
-
elif self.mode == 'end2end':
|
217 |
-
B, L, D = content_clip.shape
|
218 |
-
gen_audio_chunks = []
|
219 |
-
num_chunks = (L + self.chunk_size - 1) // self.chunk_size
|
220 |
-
|
221 |
-
for i in range(num_chunks):
|
222 |
-
start_idx = i * self.chunk_size
|
223 |
-
end_idx = min((i + 1) * self.chunk_size, L)
|
224 |
-
content_clip_chunk = content_clip[:, start_idx:end_idx, :]
|
225 |
-
|
226 |
-
gen_audio_chunk = self.dreamvc.inference([text, text_mask], content_clip,
|
227 |
-
guidance_scale=prompt_guidance_scale,
|
228 |
-
guidance_rescale=prompt_guidance_rescale,
|
229 |
-
ddim_steps=prompt_ddim_steps,
|
230 |
-
eta=prompt_eta, random_seed=prompt_random_seed)
|
231 |
-
gen_audio_chunks.append(gen_audio_chunk)
|
232 |
-
|
233 |
-
gen_audio = torch.cat(gen_audio_chunks, dim=-1)
|
234 |
-
|
235 |
-
else:
|
236 |
-
raise NotImplementedError("Select mode from 'plugin' and 'end2end'")
|
237 |
-
|
238 |
-
gen_audio = self.hifigan(gen_audio.squeeze(1))
|
239 |
-
gen_audio = gen_audio.cpu().numpy().squeeze(0).squeeze(0)
|
240 |
-
|
241 |
-
return gen_audio, self.sr
|
242 |
-
|
243 |
-
@torch.no_grad()
|
244 |
-
def simplevc(self, content_audio, speaker_audio=None, use_spk_cache=False,
|
245 |
-
vc_guidance_scale=3, vc_guidance_rescale=0.0,
|
246 |
-
vc_ddim_steps=50, vc_eta=1, vc_random_seed=None,
|
247 |
-
):
|
248 |
-
|
249 |
-
assert self.mode == 'plugin'
|
250 |
-
if speaker_audio is not None:
|
251 |
-
speaker_audio, _ = librosa.load(speaker_audio, sr=16000)
|
252 |
-
speaker_audio = torch.tensor(speaker_audio).unsqueeze(0).to(self.device)
|
253 |
-
spk_embed = spk_encoder.embed_utterance_batch(speaker_audio)
|
254 |
-
self.spk_embed_cache = spk_embed
|
255 |
-
elif use_spk_cache:
|
256 |
-
assert self.spk_embed_cache is not None
|
257 |
-
spk_embed = self.spk_embed_cache
|
258 |
-
else:
|
259 |
-
raise NotImplementedError
|
260 |
-
|
261 |
-
content_clip = self._load_content(content_audio)
|
262 |
-
|
263 |
-
B, L, D = content_clip.shape
|
264 |
-
gen_audio_chunks = []
|
265 |
-
num_chunks = (L + self.chunk_size - 1) // self.chunk_size
|
266 |
-
for i in range(num_chunks):
|
267 |
-
start_idx = i * self.chunk_size
|
268 |
-
end_idx = min((i + 1) * self.chunk_size, L)
|
269 |
-
content_clip_chunk = content_clip[:, start_idx:end_idx, :]
|
270 |
-
|
271 |
-
gen_audio_chunk = self.dreamvc.inference(
|
272 |
-
spk_embed, content_clip_chunk, None,
|
273 |
-
guidance_scale=vc_guidance_scale,
|
274 |
-
guidance_rescale=vc_guidance_rescale,
|
275 |
-
ddim_steps=vc_ddim_steps,
|
276 |
-
eta=vc_eta,
|
277 |
-
random_seed=vc_random_seed)
|
278 |
-
|
279 |
-
gen_audio_chunks.append(gen_audio_chunk)
|
280 |
-
|
281 |
-
gen_audio = torch.cat(gen_audio_chunks, dim=-1)
|
282 |
-
|
283 |
-
gen_audio = self.hifigan(gen_audio.squeeze(1))
|
284 |
-
gen_audio = gen_audio.cpu().numpy().squeeze(0).squeeze(0)
|
285 |
-
|
286 |
-
return gen_audio, self.sr
|
287 |
-
|
288 |
-
|
289 |
-
if __name__ == '__main__':
|
290 |
-
dreamvoice = DreamVoice(config='dreamvc.yaml', mode='plugin', device='cuda')
|
291 |
-
content_audio = 'test.wav'
|
292 |
-
speaker_audio = 'speaker.wav'
|
293 |
-
prompt = 'young female voice, sounds young and cute'
|
294 |
-
gen_audio, sr = dreamvoice.genvc('test.wav', prompt)
|
295 |
-
dreamvoice.save_audio('debug.wav', gen_audio, sr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/.ipynb_checkpoints/dreamvc-checkpoint.yaml
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
version: 1.1
|
2 |
-
|
3 |
-
sample_rate: 24000
|
4 |
-
vocoder_path: 'ckpts/bigvgan_24k/g_01000000.pt'
|
5 |
-
vocoder_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/bigvgan_24k/g_01000000.pt'
|
6 |
-
vocoder_config_path: 'ckpts/bigvgan_24k/config.json'
|
7 |
-
vocoder_config_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/bigvgan_24k/config.json'
|
8 |
-
|
9 |
-
speaker_path: 'ckpts/spk_encoder/pretrained.pt'
|
10 |
-
speaker_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/spk_encoder/pretrained.pt'
|
11 |
-
lm_path: 'google/flan-t5-base'
|
12 |
-
|
13 |
-
dreamvc:
|
14 |
-
config_path: 'src/configs/diffvc_cross.yaml'
|
15 |
-
ckpt_path: 'ckpts/dreamvc_cross.pt'
|
16 |
-
ckpt_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/dreamvc_cross.pt'
|
17 |
-
|
18 |
-
rediffvc:
|
19 |
-
config_path: 'src/configs/diffvc_base.yaml'
|
20 |
-
ckpt_path: 'ckpts/dreamvc_base.pt'
|
21 |
-
ckpt_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/dreamvc_base.pt'
|
22 |
-
|
23 |
-
dreamvg:
|
24 |
-
config_path: 'src/configs/plugin_cross.yaml'
|
25 |
-
ckpt_path: 'ckpts/dreamvc_plugin.pt'
|
26 |
-
ckpt_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/ckpts/dreamvc_plugin.pt'
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/.ipynb_checkpoints/openvoice_utils-checkpoint.py
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import librosa
|
4 |
-
from tqdm import tqdm
|
5 |
-
from openvoice.mel_processing import spectrogram_torch
|
6 |
-
from whisper_timestamped.transcribe import get_audio_tensor, get_vad_segments
|
7 |
-
|
8 |
-
|
9 |
-
@torch.no_grad()
|
10 |
-
def se_extractor(audio_path, vc):
|
11 |
-
# vad
|
12 |
-
SAMPLE_RATE = 16000
|
13 |
-
audio_vad = get_audio_tensor(audio_path)
|
14 |
-
segments = get_vad_segments(
|
15 |
-
audio_vad,
|
16 |
-
output_sample=True,
|
17 |
-
min_speech_duration=0.1,
|
18 |
-
min_silence_duration=1,
|
19 |
-
method="silero",
|
20 |
-
)
|
21 |
-
segments = [(seg["start"], seg["end"]) for seg in segments]
|
22 |
-
segments = [(float(s) / SAMPLE_RATE, float(e) / SAMPLE_RATE) for s,e in segments]
|
23 |
-
|
24 |
-
if len(segments) == 0:
|
25 |
-
segments = [(0, len(audio_vad)/SAMPLE_RATE)]
|
26 |
-
print(segments)
|
27 |
-
|
28 |
-
# spk
|
29 |
-
hps = vc.hps
|
30 |
-
device = vc.device
|
31 |
-
model = vc.model
|
32 |
-
gs = []
|
33 |
-
|
34 |
-
audio, sr = librosa.load(audio_path, sr=hps.data.sampling_rate)
|
35 |
-
audio = torch.tensor(audio).float().to(device)
|
36 |
-
|
37 |
-
for s, e in segments:
|
38 |
-
y = audio[int(hps.data.sampling_rate*s):int(hps.data.sampling_rate*e)]
|
39 |
-
y = y.to(device)
|
40 |
-
y = y.unsqueeze(0)
|
41 |
-
y = spectrogram_torch(y, hps.data.filter_length,
|
42 |
-
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
43 |
-
center=False).to(device)
|
44 |
-
g = model.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
45 |
-
gs.append(g.detach())
|
46 |
-
|
47 |
-
gs = torch.stack(gs).mean(0)
|
48 |
-
return gs.cpu()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/.ipynb_checkpoints/plugin-checkpoint.py
DELETED
@@ -1,128 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import requests
|
3 |
-
import yaml
|
4 |
-
import torch
|
5 |
-
import librosa
|
6 |
-
import numpy as np
|
7 |
-
import soundfile as sf
|
8 |
-
from pathlib import Path
|
9 |
-
from transformers import T5Tokenizer, T5EncoderModel
|
10 |
-
from tqdm import tqdm
|
11 |
-
from .src.plugin_wrapper import DreamVG
|
12 |
-
|
13 |
-
|
14 |
-
class DreamVoice_Plugin:
|
15 |
-
def __init__(self, config='plugin.yaml', device='cuda'):
|
16 |
-
# Initial setup
|
17 |
-
script_dir = Path(__file__).resolve().parent
|
18 |
-
config_path = script_dir / config
|
19 |
-
|
20 |
-
# Load configuration file
|
21 |
-
with open(config_path, 'r') as fp:
|
22 |
-
self.config = yaml.safe_load(fp)
|
23 |
-
|
24 |
-
self.script_dir = script_dir
|
25 |
-
|
26 |
-
# Ensure all checkpoints are downloaded
|
27 |
-
self._ensure_checkpoints_exist()
|
28 |
-
|
29 |
-
# Initialize attributes
|
30 |
-
self.device = device
|
31 |
-
|
32 |
-
# Load tokenizer and text encoder
|
33 |
-
lm_path = self.config['lm_path']
|
34 |
-
self.tokenizer = T5Tokenizer.from_pretrained(lm_path)
|
35 |
-
self.text_encoder = T5EncoderModel.from_pretrained(lm_path).to(device).eval()
|
36 |
-
|
37 |
-
self.dreamvg = DreamVG(
|
38 |
-
config_path=self.script_dir / self.config['dreamvg']['config_path'],
|
39 |
-
ckpt_path=self.script_dir / self.config['dreamvg']['ckpt_path'],
|
40 |
-
device=self.device
|
41 |
-
|
42 |
-
)
|
43 |
-
def _ensure_checkpoints_exist(self):
|
44 |
-
checkpoints = [
|
45 |
-
('dreamvg.ckpt_path', self.config.get('dreamvg', {}).get('ckpt_url'))
|
46 |
-
]
|
47 |
-
|
48 |
-
for path_key, url in checkpoints:
|
49 |
-
local_path = self._get_local_path(path_key)
|
50 |
-
if not local_path.exists() and url:
|
51 |
-
print(f"Downloading {path_key} from {url}")
|
52 |
-
self._download_file(url, local_path)
|
53 |
-
|
54 |
-
def _get_local_path(self, path_key):
|
55 |
-
keys = path_key.split('.')
|
56 |
-
local_path = self.config
|
57 |
-
for key in keys:
|
58 |
-
local_path = local_path.get(key, {})
|
59 |
-
return self.script_dir / local_path
|
60 |
-
|
61 |
-
def _download_file(self, url, local_path):
|
62 |
-
try:
|
63 |
-
# Attempt to send a GET request to the URL
|
64 |
-
response = requests.get(url, stream=True)
|
65 |
-
response.raise_for_status() # Ensure we raise an exception for HTTP errors
|
66 |
-
except requests.exceptions.RequestException as e:
|
67 |
-
# Log the error for debugging purposes
|
68 |
-
print(f"Error encountered: {e}")
|
69 |
-
|
70 |
-
# Development mode: prompt user for Hugging Face API key
|
71 |
-
user_input = input("Private checkpoint, please request authorization and enter your Hugging Face API key.")
|
72 |
-
self.hf_key = user_input if user_input else None
|
73 |
-
|
74 |
-
# Set headers if an API key is provided
|
75 |
-
headers = {'Authorization': f'Bearer {self.hf_key}'} if self.hf_key else {}
|
76 |
-
|
77 |
-
try:
|
78 |
-
# Attempt to send a GET request with headers in development mode
|
79 |
-
response = requests.get(url, stream=True, headers=headers)
|
80 |
-
response.raise_for_status() # Ensure we raise an exception for HTTP errors
|
81 |
-
except requests.exceptions.RequestException as e:
|
82 |
-
# Log the error for debugging purposes
|
83 |
-
print(f"Error encountered in dev mode: {e}")
|
84 |
-
response = None # Handle response accordingly in your code
|
85 |
-
|
86 |
-
local_path.parent.mkdir(parents=True, exist_ok=True)
|
87 |
-
|
88 |
-
total_size = int(response.headers.get('content-length', 0))
|
89 |
-
block_size = 8192
|
90 |
-
t = tqdm(total=total_size, unit='iB', unit_scale=True)
|
91 |
-
|
92 |
-
with open(local_path, 'wb') as f:
|
93 |
-
for chunk in response.iter_content(chunk_size=block_size):
|
94 |
-
t.update(len(chunk))
|
95 |
-
f.write(chunk)
|
96 |
-
t.close()
|
97 |
-
|
98 |
-
def _init_plugin_mode(self):
|
99 |
-
# Initialize DreamVG
|
100 |
-
self.dreamvg = DreamVG(
|
101 |
-
config_path=self.script_dir / self.config['dreamvg']['config_path'],
|
102 |
-
ckpt_path=self.script_dir / self.config['dreamvg']['ckpt_path'],
|
103 |
-
device=self.device
|
104 |
-
)
|
105 |
-
|
106 |
-
# Load speaker encoder
|
107 |
-
spk_encoder.load_model(self.script_dir / self.config['speaker_path'], self.device)
|
108 |
-
self.spk_encoder = spk_encoder
|
109 |
-
self.spk_embed_cache = None
|
110 |
-
|
111 |
-
|
112 |
-
@torch.no_grad()
|
113 |
-
def gen_spk(self, prompt,
|
114 |
-
prompt_guidance_scale=3, prompt_guidance_rescale=0.0,
|
115 |
-
prompt_ddim_steps=100, prompt_eta=1, prompt_random_seed=None,):
|
116 |
-
|
117 |
-
text_batch = self.tokenizer(prompt, max_length=32,
|
118 |
-
padding='max_length', truncation=True, return_tensors="pt")
|
119 |
-
text, text_mask = text_batch.input_ids.to(self.device), \
|
120 |
-
text_batch.attention_mask.to(self.device)
|
121 |
-
text = self.text_encoder(input_ids=text, attention_mask=text_mask)[0]
|
122 |
-
|
123 |
-
spk_embed = self.dreamvg.inference([text, text_mask],
|
124 |
-
guidance_scale=prompt_guidance_scale,
|
125 |
-
guidance_rescale=prompt_guidance_rescale,
|
126 |
-
ddim_steps=prompt_ddim_steps, eta=prompt_eta,
|
127 |
-
random_seed=prompt_random_seed)
|
128 |
-
return spk_embed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/.ipynb_checkpoints/plugin-checkpoint.yaml
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
version: 1.1
|
2 |
-
|
3 |
-
lm_path: 'google/flan-t5-base'
|
4 |
-
|
5 |
-
dreamvg:
|
6 |
-
config_path: 'src/configs/plugin_cross_openvoice.yaml'
|
7 |
-
ckpt_path: 'plugin_ckpts/openvoice_v2.pt'
|
8 |
-
ckpt_url: 'https://huggingface.co/myshell-ai/DreamVoice/resolve/main/dreamvoice/plugin_ckpts/openvoice_v2.pt'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (244 Bytes)
|
|
dreamvoice/__pycache__/api.cpython-310.pyc
DELETED
Binary file (8.04 kB)
|
|
dreamvoice/__pycache__/openvoice_utils.cpython-310.pyc
DELETED
Binary file (1.65 kB)
|
|
dreamvoice/__pycache__/plugin.cpython-310.pyc
DELETED
Binary file (4.01 kB)
|
|
dreamvoice/src/.ipynb_checkpoints/plugin_wrapper-checkpoint.py
DELETED
@@ -1,76 +0,0 @@
|
|
1 |
-
import yaml
|
2 |
-
import torch
|
3 |
-
from diffusers import DDIMScheduler
|
4 |
-
from .model.p2e_cross import P2E_Cross
|
5 |
-
from .utils import scale_shift, scale_shift_re, rescale_noise_cfg
|
6 |
-
|
7 |
-
|
8 |
-
class DreamVG(object):
|
9 |
-
def __init__(self,
|
10 |
-
config_path='configs/plugin_cross.yaml',
|
11 |
-
ckpt_path='../ckpts/dreamvc_plugin.pt',
|
12 |
-
device='cpu'):
|
13 |
-
|
14 |
-
with open(config_path, 'r') as fp:
|
15 |
-
config = yaml.safe_load(fp)
|
16 |
-
|
17 |
-
self.device = device
|
18 |
-
self.model = P2E_Cross(config['model']).to(device)
|
19 |
-
self.model.load_state_dict(torch.load(ckpt_path)['model'])
|
20 |
-
self.model.eval()
|
21 |
-
|
22 |
-
noise_scheduler = DDIMScheduler(num_train_timesteps=config['scheduler']['num_train_steps'],
|
23 |
-
beta_start=config['scheduler']['beta_start'],
|
24 |
-
beta_end=config['scheduler']['beta_end'],
|
25 |
-
rescale_betas_zero_snr=True,
|
26 |
-
timestep_spacing="trailing",
|
27 |
-
clip_sample=False,
|
28 |
-
prediction_type='v_prediction')
|
29 |
-
self.noise_scheduler = noise_scheduler
|
30 |
-
self.scale = config['scheduler']['scale']
|
31 |
-
self.shift = config['scheduler']['shift']
|
32 |
-
self.spk_shape = config['model']['unet']['in_channels']
|
33 |
-
|
34 |
-
@torch.no_grad()
|
35 |
-
def inference(self, text,
|
36 |
-
guidance_scale=5, guidance_rescale=0.7,
|
37 |
-
ddim_steps=50, eta=1, random_seed=2023,
|
38 |
-
):
|
39 |
-
text, text_mask = text
|
40 |
-
self.model.eval()
|
41 |
-
|
42 |
-
gen_shape = (1, self.spk_shape)
|
43 |
-
|
44 |
-
if random_seed is not None:
|
45 |
-
generator = torch.Generator(device=self.device).manual_seed(random_seed)
|
46 |
-
else:
|
47 |
-
generator = torch.Generator(device=self.device)
|
48 |
-
generator.seed()
|
49 |
-
|
50 |
-
self.noise_scheduler.set_timesteps(ddim_steps)
|
51 |
-
|
52 |
-
# init noise
|
53 |
-
noise = torch.randn(gen_shape, generator=generator, device=self.device)
|
54 |
-
latents = noise
|
55 |
-
|
56 |
-
for t in self.noise_scheduler.timesteps:
|
57 |
-
latents = self.noise_scheduler.scale_model_input(latents, t)
|
58 |
-
|
59 |
-
if guidance_scale:
|
60 |
-
output_text = self.model(latents, t, text, text_mask, train_cfg=False)
|
61 |
-
output_uncond = self.model(latents, t, text, text_mask, train_cfg=True, cfg_prob=1.0)
|
62 |
-
|
63 |
-
output_pred = output_uncond + guidance_scale * (output_text - output_uncond)
|
64 |
-
if guidance_rescale > 0.0:
|
65 |
-
output_pred = rescale_noise_cfg(output_pred, output_text,
|
66 |
-
guidance_rescale=guidance_rescale)
|
67 |
-
else:
|
68 |
-
output_pred = self.model(latents, t, text, text_mask, train_cfg=False)
|
69 |
-
|
70 |
-
latents = self.noise_scheduler.step(model_output=output_pred, timestep=t, sample=latents,
|
71 |
-
eta=eta, generator=generator).prev_sample
|
72 |
-
|
73 |
-
# pred = reverse_minmax_norm_diff(latents, vmin=0.0, vmax=0.5)
|
74 |
-
pred = scale_shift_re(latents, 1/self.scale, self.shift)
|
75 |
-
# pred = torch.clip(pred, min=0.0, max=0.5)
|
76 |
-
return pred
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/src/.ipynb_checkpoints/vc_wrapper-checkpoint.py
DELETED
@@ -1,144 +0,0 @@
|
|
1 |
-
import yaml
|
2 |
-
import torch
|
3 |
-
from diffusers import DDIMScheduler
|
4 |
-
from .model.model import DiffVC
|
5 |
-
from .model.model_cross import DiffVC_Cross
|
6 |
-
from .utils import scale_shift, scale_shift_re, rescale_noise_cfg
|
7 |
-
|
8 |
-
|
9 |
-
class ReDiffVC(object):
|
10 |
-
def __init__(self,
|
11 |
-
config_path='configs/diffvc_base.yaml',
|
12 |
-
ckpt_path='../ckpts/dreamvc_base.pt',
|
13 |
-
device='cpu'):
|
14 |
-
|
15 |
-
with open(config_path, 'r') as fp:
|
16 |
-
config = yaml.safe_load(fp)
|
17 |
-
|
18 |
-
self.device = device
|
19 |
-
self.model = DiffVC(config['model']).to(device)
|
20 |
-
self.model.load_state_dict(torch.load(ckpt_path)['model'])
|
21 |
-
self.model.eval()
|
22 |
-
|
23 |
-
noise_scheduler = DDIMScheduler(num_train_timesteps=config['scheduler']['num_train_steps'],
|
24 |
-
beta_start=config['scheduler']['beta_start'],
|
25 |
-
beta_end=config['scheduler']['beta_end'],
|
26 |
-
rescale_betas_zero_snr=True,
|
27 |
-
timestep_spacing="trailing",
|
28 |
-
clip_sample=False,
|
29 |
-
prediction_type='v_prediction')
|
30 |
-
self.noise_scheduler = noise_scheduler
|
31 |
-
self.scale = config['scheduler']['scale']
|
32 |
-
self.shift = config['scheduler']['shift']
|
33 |
-
self.melshape = config['model']['unet']['sample_size'][0]
|
34 |
-
|
35 |
-
@torch.no_grad()
|
36 |
-
def inference(self,
|
37 |
-
spk_embed, content_clip, f0_clip=None,
|
38 |
-
guidance_scale=3, guidance_rescale=0.7,
|
39 |
-
ddim_steps=50, eta=1, random_seed=2023):
|
40 |
-
|
41 |
-
self.model.eval()
|
42 |
-
if random_seed is not None:
|
43 |
-
generator = torch.Generator(device=self.device).manual_seed(random_seed)
|
44 |
-
else:
|
45 |
-
generator = torch.Generator(device=self.device)
|
46 |
-
generator.seed()
|
47 |
-
|
48 |
-
self.noise_scheduler.set_timesteps(ddim_steps)
|
49 |
-
|
50 |
-
# init noise
|
51 |
-
gen_shape = (1, 1, self.melshape, content_clip.shape[-2])
|
52 |
-
noise = torch.randn(gen_shape, generator=generator, device=self.device)
|
53 |
-
latents = noise
|
54 |
-
|
55 |
-
for t in self.noise_scheduler.timesteps:
|
56 |
-
latents = self.noise_scheduler.scale_model_input(latents, t)
|
57 |
-
|
58 |
-
if guidance_scale:
|
59 |
-
output_text = self.model(latents, t, content_clip, spk_embed, f0_clip, train_cfg=False)
|
60 |
-
output_uncond = self.model(latents, t, content_clip, spk_embed, f0_clip, train_cfg=True,
|
61 |
-
speaker_cfg=1.0, pitch_cfg=0.0)
|
62 |
-
|
63 |
-
output_pred = output_uncond + guidance_scale * (output_text - output_uncond)
|
64 |
-
if guidance_rescale > 0.0:
|
65 |
-
output_pred = rescale_noise_cfg(output_pred, output_text,
|
66 |
-
guidance_rescale=guidance_rescale)
|
67 |
-
else:
|
68 |
-
output_pred = self.model(latents, t, content_clip, spk_embed, f0_clip, train_cfg=False)
|
69 |
-
|
70 |
-
latents = self.noise_scheduler.step(model_output=output_pred, timestep=t, sample=latents,
|
71 |
-
eta=eta, generator=generator).prev_sample
|
72 |
-
|
73 |
-
pred = scale_shift_re(latents, scale=1/self.scale, shift=self.shift)
|
74 |
-
return pred
|
75 |
-
|
76 |
-
|
77 |
-
class DreamVC(object):
|
78 |
-
def __init__(self,
|
79 |
-
config_path='configs/diffvc_cross.yaml',
|
80 |
-
ckpt_path='../ckpts/dreamvc_cross.pt',
|
81 |
-
device='cpu'):
|
82 |
-
|
83 |
-
with open(config_path, 'r') as fp:
|
84 |
-
config = yaml.safe_load(fp)
|
85 |
-
|
86 |
-
self.device = device
|
87 |
-
self.model = DiffVC_Cross(config['model']).to(device)
|
88 |
-
self.model.load_state_dict(torch.load(ckpt_path)['model'])
|
89 |
-
self.model.eval()
|
90 |
-
|
91 |
-
noise_scheduler = DDIMScheduler(num_train_timesteps=config['scheduler']['num_train_steps'],
|
92 |
-
beta_start=config['scheduler']['beta_start'],
|
93 |
-
beta_end=config['scheduler']['beta_end'],
|
94 |
-
rescale_betas_zero_snr=True,
|
95 |
-
timestep_spacing="trailing",
|
96 |
-
clip_sample=False,
|
97 |
-
prediction_type='v_prediction')
|
98 |
-
self.noise_scheduler = noise_scheduler
|
99 |
-
self.scale = config['scheduler']['scale']
|
100 |
-
self.shift = config['scheduler']['shift']
|
101 |
-
self.melshape = config['model']['unet']['sample_size'][0]
|
102 |
-
|
103 |
-
@torch.no_grad()
|
104 |
-
def inference(self,
|
105 |
-
text, content_clip, f0_clip=None,
|
106 |
-
guidance_scale=3, guidance_rescale=0.7,
|
107 |
-
ddim_steps=50, eta=1, random_seed=2023):
|
108 |
-
|
109 |
-
text, text_mask = text
|
110 |
-
self.model.eval()
|
111 |
-
if random_seed is not None:
|
112 |
-
generator = torch.Generator(device=self.device).manual_seed(random_seed)
|
113 |
-
else:
|
114 |
-
generator = torch.Generator(device=self.device)
|
115 |
-
generator.seed()
|
116 |
-
|
117 |
-
self.noise_scheduler.set_timesteps(ddim_steps)
|
118 |
-
|
119 |
-
# init noise
|
120 |
-
gen_shape = (1, 1, self.melshape, content_clip.shape[-2])
|
121 |
-
noise = torch.randn(gen_shape, generator=generator, device=self.device)
|
122 |
-
latents = noise
|
123 |
-
|
124 |
-
for t in self.noise_scheduler.timesteps:
|
125 |
-
latents = self.noise_scheduler.scale_model_input(latents, t)
|
126 |
-
|
127 |
-
if guidance_scale:
|
128 |
-
output_text = self.model(latents, t, content_clip, text, text_mask, f0_clip, train_cfg=False)
|
129 |
-
output_uncond = self.model(latents, t, content_clip, text, text_mask, f0_clip, train_cfg=True,
|
130 |
-
speaker_cfg=1.0, pitch_cfg=0.0)
|
131 |
-
|
132 |
-
output_pred = output_uncond + guidance_scale * (output_text - output_uncond)
|
133 |
-
if guidance_rescale > 0.0:
|
134 |
-
output_pred = rescale_noise_cfg(output_pred, output_text,
|
135 |
-
guidance_rescale=guidance_rescale)
|
136 |
-
else:
|
137 |
-
output_pred = self.model(latents, t, content_clip, text, text_mask, f0_clip, train_cfg=False)
|
138 |
-
|
139 |
-
latents = self.noise_scheduler.step(model_output=output_pred, timestep=t, sample=latents,
|
140 |
-
eta=eta, generator=generator).prev_sample
|
141 |
-
|
142 |
-
pred = scale_shift_re(latents, scale=1/self.scale, shift=self.shift)
|
143 |
-
return pred
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/src/__pycache__/plugin_wrapper.cpython-310.pyc
DELETED
Binary file (2.4 kB)
|
|
dreamvoice/src/__pycache__/vc_wrapper.cpython-310.pyc
DELETED
Binary file (3.49 kB)
|
|
dreamvoice/src/configs/.ipynb_checkpoints/plugin_cross-checkpoint.yaml
DELETED
@@ -1,39 +0,0 @@
|
|
1 |
-
version: 1.0
|
2 |
-
|
3 |
-
system: "cross"
|
4 |
-
|
5 |
-
model:
|
6 |
-
cls_embedding:
|
7 |
-
content_dim: 768
|
8 |
-
content_hidden: 256
|
9 |
-
|
10 |
-
unet:
|
11 |
-
sample_size: [1, 1]
|
12 |
-
in_channels: 256
|
13 |
-
out_channels: 256
|
14 |
-
layers_per_block: 2
|
15 |
-
block_out_channels: [256]
|
16 |
-
down_block_types:
|
17 |
-
[
|
18 |
-
"CrossAttnDownBlock2D",
|
19 |
-
]
|
20 |
-
up_block_types:
|
21 |
-
[
|
22 |
-
"CrossAttnUpBlock2D",
|
23 |
-
]
|
24 |
-
attention_head_dim: 32
|
25 |
-
cross_attention_dim: 768
|
26 |
-
|
27 |
-
scheduler:
|
28 |
-
num_train_steps: 1000
|
29 |
-
beta_schedule: 'linear'
|
30 |
-
beta_start: 0.0001
|
31 |
-
beta_end: 0.02
|
32 |
-
num_infer_steps: 50
|
33 |
-
rescale_betas_zero_snr: true
|
34 |
-
timestep_spacing: "trailing"
|
35 |
-
clip_sample: false
|
36 |
-
prediction_type: 'v_prediction'
|
37 |
-
scale: 0.05
|
38 |
-
shift: -0.035
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/src/configs/.ipynb_checkpoints/plugin_cross_openvoice-checkpoint.yaml
DELETED
@@ -1,39 +0,0 @@
|
|
1 |
-
version: 1.0
|
2 |
-
|
3 |
-
system: "cross"
|
4 |
-
|
5 |
-
model:
|
6 |
-
cls_embedding:
|
7 |
-
content_dim: 768
|
8 |
-
content_hidden: 256
|
9 |
-
|
10 |
-
unet:
|
11 |
-
sample_size: [1, 1]
|
12 |
-
in_channels: 256
|
13 |
-
out_channels: 256
|
14 |
-
layers_per_block: 2
|
15 |
-
block_out_channels: [256]
|
16 |
-
down_block_types:
|
17 |
-
[
|
18 |
-
"CrossAttnDownBlock2D",
|
19 |
-
]
|
20 |
-
up_block_types:
|
21 |
-
[
|
22 |
-
"CrossAttnUpBlock2D",
|
23 |
-
]
|
24 |
-
attention_head_dim: 32
|
25 |
-
cross_attention_dim: 768
|
26 |
-
|
27 |
-
scheduler:
|
28 |
-
num_train_steps: 1000
|
29 |
-
beta_schedule: 'linear'
|
30 |
-
beta_start: 0.0001
|
31 |
-
beta_end: 0.02
|
32 |
-
num_infer_steps: 50
|
33 |
-
rescale_betas_zero_snr: true
|
34 |
-
timestep_spacing: "trailing"
|
35 |
-
clip_sample: false
|
36 |
-
prediction_type: 'v_prediction'
|
37 |
-
scale: 1.0
|
38 |
-
shift: 0.0
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/src/feats/.ipynb_checkpoints/contentvec-checkpoint.py
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import librosa
|
3 |
-
from fairseq import checkpoint_utils
|
4 |
-
import torch.nn.functional as F
|
5 |
-
|
6 |
-
|
7 |
-
def get_model(vec_path):
|
8 |
-
print("load model(s) from {}".format(vec_path))
|
9 |
-
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
10 |
-
[vec_path],
|
11 |
-
suffix="",
|
12 |
-
)
|
13 |
-
model = models[0]
|
14 |
-
model.eval()
|
15 |
-
return model
|
16 |
-
|
17 |
-
|
18 |
-
@torch.no_grad()
|
19 |
-
def get_content(hmodel, wav_16k_tensor, device='cuda', layer=12):
|
20 |
-
# print(layer)
|
21 |
-
wav_16k_tensor = wav_16k_tensor.to(device)
|
22 |
-
# so that the output shape will be len(audio//320)
|
23 |
-
wav_16k_tensor = F.pad(wav_16k_tensor, ((400 - 320) // 2, (400 - 320) // 2))
|
24 |
-
feats = wav_16k_tensor
|
25 |
-
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
26 |
-
inputs = {
|
27 |
-
"source": feats.to(wav_16k_tensor.device),
|
28 |
-
"padding_mask": padding_mask.to(wav_16k_tensor.device),
|
29 |
-
"output_layer": layer
|
30 |
-
}
|
31 |
-
logits = hmodel.extract_features(**inputs)[0]
|
32 |
-
# feats = hmodel.final_proj(logits[0])
|
33 |
-
return logits
|
34 |
-
|
35 |
-
|
36 |
-
if __name__ == '__main__':
|
37 |
-
audio, sr = librosa.load('test.wav', sr=16000)
|
38 |
-
audio = audio[:100*320]
|
39 |
-
model = get_model('../../ckpts/checkpoint_best_legacy_500.pt')
|
40 |
-
model = model.cuda()
|
41 |
-
content = get_content(model, torch.tensor([audio]))
|
42 |
-
print(content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/src/feats/.ipynb_checkpoints/contentvec_hf-checkpoint.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
from transformers import HubertModel
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch
|
4 |
-
import torch.nn.functional as F
|
5 |
-
import librosa
|
6 |
-
|
7 |
-
|
8 |
-
class HubertModelWithFinalProj(HubertModel):
|
9 |
-
def __init__(self, config):
|
10 |
-
super().__init__(config)
|
11 |
-
|
12 |
-
# The final projection layer is only used for backward compatibility.
|
13 |
-
# Following https://github.com/auspicious3000/contentvec/issues/6
|
14 |
-
# Remove this layer is necessary to achieve the desired outcome.
|
15 |
-
self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size)
|
16 |
-
|
17 |
-
|
18 |
-
def get_content_model(config='lengyue233/content-vec-best'):
|
19 |
-
model = HubertModelWithFinalProj.from_pretrained(config)
|
20 |
-
model.eval()
|
21 |
-
return model
|
22 |
-
|
23 |
-
|
24 |
-
@torch.no_grad()
|
25 |
-
def get_content(model, wav_16k_tensor, device='cuda'):
|
26 |
-
# print(layer)
|
27 |
-
wav_16k_tensor = wav_16k_tensor.to(device)
|
28 |
-
# so that the output shape will be len(audio//320)
|
29 |
-
wav_16k_tensor = F.pad(wav_16k_tensor, ((400 - 320) // 2, (400 - 320) // 2))
|
30 |
-
logits = model(wav_16k_tensor)['last_hidden_state']
|
31 |
-
return logits
|
32 |
-
|
33 |
-
|
34 |
-
if __name__ == '__main__':
|
35 |
-
model = get_content_model().cuda()
|
36 |
-
audio, sr = librosa.load('test.wav', sr=16000)
|
37 |
-
audio = audio[:100*320]
|
38 |
-
audio = torch.tensor([audio])
|
39 |
-
content = get_content(model, audio, 'cuda')
|
40 |
-
print(content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/src/feats/.ipynb_checkpoints/hubert_model-checkpoint.py
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
import torch, torchaudio
|
2 |
-
from .hubert.hubert import HubertSoft
|
3 |
-
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
|
4 |
-
import librosa
|
5 |
-
|
6 |
-
|
7 |
-
def get_soft_model(model_path):
|
8 |
-
hubert = HubertSoft()
|
9 |
-
# Load checkpoint (either hubert_soft or hubert_discrete)
|
10 |
-
# hubert = torch.hub.load("bshall/hubert:main", "hubert_soft", trust_repo=True)
|
11 |
-
checkpoint = torch.load(model_path)
|
12 |
-
consume_prefix_in_state_dict_if_present(checkpoint["hubert"], "module.")
|
13 |
-
hubert.load_state_dict(checkpoint["hubert"])
|
14 |
-
hubert.eval()
|
15 |
-
return hubert
|
16 |
-
|
17 |
-
|
18 |
-
@torch.no_grad()
|
19 |
-
def get_hubert_soft_content(hmodel, wav_16k_tensor, device='cuda'):
|
20 |
-
wav_16k_tensor = wav_16k_tensor.to(device).unsqueeze(1)
|
21 |
-
# print(wav_16k_tensor.shape)
|
22 |
-
units = hmodel.units(wav_16k_tensor)
|
23 |
-
# print(units.shape)
|
24 |
-
return units.cpu()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/src/feats/.ipynb_checkpoints/test-checkpoint.py
DELETED
@@ -1,22 +0,0 @@
|
|
1 |
-
import torch, torchaudio
|
2 |
-
from hubert.hubert import HubertSoft
|
3 |
-
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
|
4 |
-
import librosa
|
5 |
-
|
6 |
-
|
7 |
-
def get_soft_model(model_path):
|
8 |
-
hubert = HubertSoft()
|
9 |
-
# Load checkpoint (either hubert_soft or hubert_discrete)
|
10 |
-
# hubert = torch.hub.load("bshall/hubert:main", "hubert_soft", trust_repo=True)
|
11 |
-
checkpoint = torch.load(model_path)
|
12 |
-
consume_prefix_in_state_dict_if_present(checkpoint["hubert"], "module.")
|
13 |
-
hubert.load_state_dict(checkpoint["hubert"])
|
14 |
-
hubert.eval()
|
15 |
-
return model
|
16 |
-
|
17 |
-
|
18 |
-
@torch.no_grad()
|
19 |
-
def get_hubert_soft_content(hmodel, wav_16k_tensor, device='cuda'):
|
20 |
-
wav_16k_tensor = wav_16k_tensor.to(device)
|
21 |
-
units = hmodel.units(wav_16k_tensor)
|
22 |
-
return units.cpu()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/src/feats/__pycache__/contentvec.cpython-310.pyc
DELETED
Binary file (1.29 kB)
|
|
dreamvoice/src/feats/__pycache__/contentvec.cpython-311.pyc
DELETED
Binary file (2.23 kB)
|
|
dreamvoice/src/feats/__pycache__/contentvec_hf.cpython-310.pyc
DELETED
Binary file (1.45 kB)
|
|
dreamvoice/src/feats/__pycache__/contentvec_hf.cpython-311.pyc
DELETED
Binary file (2.41 kB)
|
|
dreamvoice/src/feats/__pycache__/hubert_model.cpython-311.pyc
DELETED
Binary file (1.44 kB)
|
|
dreamvoice/src/model/.ipynb_checkpoints/model-checkpoint.py
DELETED
@@ -1,98 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from diffusers import UNet2DModel, UNet2DConditionModel
|
4 |
-
import yaml
|
5 |
-
from einops import repeat, rearrange
|
6 |
-
|
7 |
-
from typing import Any
|
8 |
-
from torch import Tensor
|
9 |
-
|
10 |
-
|
11 |
-
def rand_bool(shape: Any, proba: float, device: Any = None) -> Tensor:
|
12 |
-
if proba == 1:
|
13 |
-
return torch.ones(shape, device=device, dtype=torch.bool)
|
14 |
-
elif proba == 0:
|
15 |
-
return torch.zeros(shape, device=device, dtype=torch.bool)
|
16 |
-
else:
|
17 |
-
return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
|
18 |
-
|
19 |
-
|
20 |
-
class DiffVC(nn.Module):
|
21 |
-
def __init__(self, config):
|
22 |
-
super().__init__()
|
23 |
-
self.config = config
|
24 |
-
self.unet = UNet2DModel(**self.config['unet'])
|
25 |
-
self.unet.set_use_memory_efficient_attention_xformers(True)
|
26 |
-
self.speaker_embedding = nn.Sequential(
|
27 |
-
nn.Linear(self.config['cls_embedding']['speaker_dim'], self.config['cls_embedding']['feature_dim']),
|
28 |
-
nn.SiLU(),
|
29 |
-
nn.Linear(self.config['cls_embedding']['feature_dim'], self.config['cls_embedding']['feature_dim']))
|
30 |
-
self.uncond = nn.Parameter(torch.randn(self.config['cls_embedding']['speaker_dim']) /
|
31 |
-
self.config['cls_embedding']['speaker_dim'] ** 0.5)
|
32 |
-
self.content_embedding = nn.Sequential(
|
33 |
-
nn.Linear(self.config['cls_embedding']['content_dim'], self.config['cls_embedding']['content_hidden']),
|
34 |
-
nn.SiLU(),
|
35 |
-
nn.Linear(self.config['cls_embedding']['content_hidden'], self.config['cls_embedding']['content_hidden']))
|
36 |
-
|
37 |
-
if self.config['cls_embedding']['use_pitch']:
|
38 |
-
self.pitch_control = True
|
39 |
-
self.pitch_embedding = nn.Sequential(
|
40 |
-
nn.Linear(self.config['cls_embedding']['pitch_dim'], self.config['cls_embedding']['pitch_hidden']),
|
41 |
-
nn.SiLU(),
|
42 |
-
nn.Linear(self.config['cls_embedding']['pitch_hidden'],
|
43 |
-
self.config['cls_embedding']['pitch_hidden']))
|
44 |
-
self.pitch_uncond = nn.Parameter(torch.randn(self.config['cls_embedding']['pitch_hidden']) /
|
45 |
-
self.config['cls_embedding']['pitch_hidden'] ** 0.5)
|
46 |
-
else:
|
47 |
-
print('no pitch module')
|
48 |
-
self.pitch_control = False
|
49 |
-
|
50 |
-
def forward(self, target, t, content, speaker, pitch,
|
51 |
-
train_cfg=False, speaker_cfg=0.0, pitch_cfg=0.0):
|
52 |
-
B, C, M, L = target.shape
|
53 |
-
content = self.content_embedding(content)
|
54 |
-
content = repeat(content, "b t c-> b c m t", m=M)
|
55 |
-
target = target.to(content.dtype)
|
56 |
-
x = torch.cat([target, content], dim=1)
|
57 |
-
|
58 |
-
if self.pitch_control:
|
59 |
-
if pitch is not None:
|
60 |
-
pitch = self.pitch_embedding(pitch)
|
61 |
-
else:
|
62 |
-
pitch = repeat(self.pitch_uncond, "c-> b t c", b=B, t=L).to(target.dtype)
|
63 |
-
|
64 |
-
if train_cfg:
|
65 |
-
uncond = repeat(self.uncond, "c-> b c", b=B).to(target.dtype)
|
66 |
-
batch_mask = rand_bool(shape=(B, 1), proba=speaker_cfg, device=target.device)
|
67 |
-
speaker = torch.where(batch_mask, uncond, speaker)
|
68 |
-
|
69 |
-
if self.pitch_control:
|
70 |
-
batch_mask = rand_bool(shape=(B, 1, 1), proba=pitch_cfg, device=target.device)
|
71 |
-
pitch_uncond = repeat(self.pitch_uncond, "c-> b t c", b=B, t=L).to(target.dtype)
|
72 |
-
pitch = torch.where(batch_mask, pitch_uncond, pitch)
|
73 |
-
|
74 |
-
speaker = self.speaker_embedding(speaker)
|
75 |
-
|
76 |
-
if self.pitch_control:
|
77 |
-
pitch = repeat(pitch, "b t c-> b c m t", m=M)
|
78 |
-
x = torch.cat([x, pitch], dim=1)
|
79 |
-
|
80 |
-
output = self.unet(sample=x, timestep=t, class_labels=speaker)['sample']
|
81 |
-
|
82 |
-
return output
|
83 |
-
|
84 |
-
|
85 |
-
if __name__ == "__main__":
|
86 |
-
with open('diffvc_base_pitch.yaml', 'r') as fp:
|
87 |
-
config = yaml.safe_load(fp)
|
88 |
-
device = 'cuda'
|
89 |
-
|
90 |
-
model = DiffVC(config['diffwrap']).to(device)
|
91 |
-
|
92 |
-
x = torch.rand((2, 1, 100, 256)).to(device)
|
93 |
-
y = torch.rand((2, 256, 768)).to(device)
|
94 |
-
p = torch.rand(2, 256, 1).to(device)
|
95 |
-
t = torch.randint(0, 1000, (2,)).long().to(device)
|
96 |
-
spk = torch.rand(2, 256).to(device)
|
97 |
-
|
98 |
-
output = model(x, t, y, spk, pitch=p, train_cfg=True, cfg_prob=0.25)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/src/model/.ipynb_checkpoints/model_cross-checkpoint.py
DELETED
@@ -1,116 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from diffusers import UNet2DModel, UNet2DConditionModel
|
4 |
-
import yaml
|
5 |
-
from einops import repeat, rearrange
|
6 |
-
|
7 |
-
from typing import Any
|
8 |
-
from torch import Tensor
|
9 |
-
|
10 |
-
|
11 |
-
def rand_bool(shape: Any, proba: float, device: Any = None) -> Tensor:
|
12 |
-
if proba == 1:
|
13 |
-
return torch.ones(shape, device=device, dtype=torch.bool)
|
14 |
-
elif proba == 0:
|
15 |
-
return torch.zeros(shape, device=device, dtype=torch.bool)
|
16 |
-
else:
|
17 |
-
return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
|
18 |
-
|
19 |
-
|
20 |
-
class FixedEmbedding(nn.Module):
|
21 |
-
def __init__(self, features=128):
|
22 |
-
super().__init__()
|
23 |
-
self.embedding = nn.Embedding(1, features)
|
24 |
-
|
25 |
-
def forward(self, y):
|
26 |
-
B, L, C, device = y.shape[0], y.shape[-2], y.shape[-1], y.device
|
27 |
-
embed = self.embedding(torch.zeros(B, device=device).long())
|
28 |
-
fixed_embedding = repeat(embed, "b c -> b l c", l=L)
|
29 |
-
return fixed_embedding
|
30 |
-
|
31 |
-
|
32 |
-
class DiffVC_Cross(nn.Module):
|
33 |
-
def __init__(self, config):
|
34 |
-
super().__init__()
|
35 |
-
self.config = config
|
36 |
-
self.unet = UNet2DConditionModel(**self.config['unet'])
|
37 |
-
self.unet.set_use_memory_efficient_attention_xformers(True)
|
38 |
-
self.cfg_embedding = FixedEmbedding(self.config['unet']['cross_attention_dim'])
|
39 |
-
|
40 |
-
self.context_embedding = nn.Sequential(
|
41 |
-
nn.Linear(self.config['unet']['cross_attention_dim'], self.config['unet']['cross_attention_dim']),
|
42 |
-
nn.SiLU(),
|
43 |
-
nn.Linear(self.config['unet']['cross_attention_dim'], self.config['unet']['cross_attention_dim']))
|
44 |
-
|
45 |
-
self.content_embedding = nn.Sequential(
|
46 |
-
nn.Linear(self.config['cls_embedding']['content_dim'], self.config['cls_embedding']['content_hidden']),
|
47 |
-
nn.SiLU(),
|
48 |
-
nn.Linear(self.config['cls_embedding']['content_hidden'], self.config['cls_embedding']['content_hidden']))
|
49 |
-
|
50 |
-
if self.config['cls_embedding']['use_pitch']:
|
51 |
-
self.pitch_control = True
|
52 |
-
self.pitch_embedding = nn.Sequential(
|
53 |
-
nn.Linear(self.config['cls_embedding']['pitch_dim'], self.config['cls_embedding']['pitch_hidden']),
|
54 |
-
nn.SiLU(),
|
55 |
-
nn.Linear(self.config['cls_embedding']['pitch_hidden'],
|
56 |
-
self.config['cls_embedding']['pitch_hidden']))
|
57 |
-
|
58 |
-
self.pitch_uncond = nn.Parameter(torch.randn(self.config['cls_embedding']['pitch_hidden']) /
|
59 |
-
self.config['cls_embedding']['pitch_hidden'] ** 0.5)
|
60 |
-
else:
|
61 |
-
print('no pitch module')
|
62 |
-
self.pitch_control = False
|
63 |
-
|
64 |
-
def forward(self, target, t, content, prompt, prompt_mask=None, pitch=None,
|
65 |
-
train_cfg=False, speaker_cfg=0.0, pitch_cfg=0.0):
|
66 |
-
B, C, M, L = target.shape
|
67 |
-
content = self.content_embedding(content)
|
68 |
-
content = repeat(content, "b t c-> b c m t", m=M)
|
69 |
-
target = target.to(content.dtype)
|
70 |
-
x = torch.cat([target, content], dim=1)
|
71 |
-
|
72 |
-
if self.pitch_control:
|
73 |
-
if pitch is not None:
|
74 |
-
pitch = self.pitch_embedding(pitch)
|
75 |
-
else:
|
76 |
-
pitch = repeat(self.pitch_uncond, "c-> b t c", b=B, t=L).to(target.dtype)
|
77 |
-
|
78 |
-
if train_cfg:
|
79 |
-
# Randomly mask embedding
|
80 |
-
batch_mask = rand_bool(shape=(B, 1, 1), proba=speaker_cfg, device=target.device)
|
81 |
-
fixed_embedding = self.cfg_embedding(prompt).to(target.dtype)
|
82 |
-
prompt = torch.where(batch_mask, fixed_embedding, prompt)
|
83 |
-
|
84 |
-
if self.pitch_control:
|
85 |
-
batch_mask = rand_bool(shape=(B, 1, 1), proba=pitch_cfg, device=target.device)
|
86 |
-
pitch_uncond = repeat(self.pitch_uncond, "c-> b t c", b=B, t=L).to(target.dtype)
|
87 |
-
pitch = torch.where(batch_mask, pitch_uncond, pitch)
|
88 |
-
|
89 |
-
prompt = self.context_embedding(prompt)
|
90 |
-
|
91 |
-
if self.pitch_control:
|
92 |
-
pitch = repeat(pitch, "b t c-> b c m t", m=M)
|
93 |
-
x = torch.cat([x, pitch], dim=1)
|
94 |
-
|
95 |
-
output = self.unet(sample=x, timestep=t,
|
96 |
-
encoder_hidden_states=prompt,
|
97 |
-
encoder_attention_mask=prompt_mask)['sample']
|
98 |
-
|
99 |
-
return output
|
100 |
-
|
101 |
-
|
102 |
-
if __name__ == "__main__":
|
103 |
-
with open('diffvc_cross_pitch.yaml', 'r') as fp:
|
104 |
-
config = yaml.safe_load(fp)
|
105 |
-
device = 'cuda'
|
106 |
-
|
107 |
-
model = DiffVC_Cross(config['diffwrap']).to(device)
|
108 |
-
|
109 |
-
x = torch.rand((2, 1, 100, 256)).to(device)
|
110 |
-
y = torch.rand((2, 256, 768)).to(device)
|
111 |
-
t = torch.randint(0, 1000, (2,)).long().to(device)
|
112 |
-
prompt = torch.rand(2, 64, 768).to(device)
|
113 |
-
prompt_mask = torch.ones(2, 64).to(device)
|
114 |
-
p = torch.rand(2, 256, 1).to(device)
|
115 |
-
|
116 |
-
output = model(x, t, y, prompt, prompt_mask, p, train_cfg=True, speaker_cfg=0.25, pitch_cfg=0.5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/src/model/.ipynb_checkpoints/p2e_cross-checkpoint.py
DELETED
@@ -1,80 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from diffusers import UNet2DModel, UNet2DConditionModel
|
4 |
-
import yaml
|
5 |
-
from einops import repeat, rearrange
|
6 |
-
|
7 |
-
from typing import Any
|
8 |
-
from torch import Tensor
|
9 |
-
|
10 |
-
|
11 |
-
def rand_bool(shape: Any, proba: float, device: Any = None) -> Tensor:
|
12 |
-
if proba == 1:
|
13 |
-
return torch.ones(shape, device=device, dtype=torch.bool)
|
14 |
-
elif proba == 0:
|
15 |
-
return torch.zeros(shape, device=device, dtype=torch.bool)
|
16 |
-
else:
|
17 |
-
return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
|
18 |
-
|
19 |
-
|
20 |
-
class FixedEmbedding(nn.Module):
|
21 |
-
def __init__(self, features=128):
|
22 |
-
super().__init__()
|
23 |
-
self.embedding = nn.Embedding(1, features)
|
24 |
-
|
25 |
-
def forward(self, y):
|
26 |
-
B, L, C, device = y.shape[0], y.shape[-2], y.shape[-1], y.device
|
27 |
-
embed = self.embedding(torch.zeros(B, device=device).long())
|
28 |
-
fixed_embedding = repeat(embed, "b c -> b l c", l=L)
|
29 |
-
return fixed_embedding
|
30 |
-
|
31 |
-
|
32 |
-
class P2E_Cross(nn.Module):
|
33 |
-
def __init__(self, config):
|
34 |
-
super().__init__()
|
35 |
-
self.config = config
|
36 |
-
self.unet = UNet2DConditionModel(**self.config['unet'])
|
37 |
-
self.unet.set_use_memory_efficient_attention_xformers(True)
|
38 |
-
self.cfg_embedding = FixedEmbedding(self.config['unet']['cross_attention_dim'])
|
39 |
-
|
40 |
-
self.context_embedding = nn.Sequential(
|
41 |
-
nn.Linear(self.config['unet']['cross_attention_dim'], self.config['unet']['cross_attention_dim']),
|
42 |
-
nn.SiLU(),
|
43 |
-
nn.Linear(self.config['unet']['cross_attention_dim'], self.config['unet']['cross_attention_dim']))
|
44 |
-
|
45 |
-
def forward(self, target, t, prompt, prompt_mask=None,
|
46 |
-
train_cfg=False, cfg_prob=0.0):
|
47 |
-
B, C = target.shape
|
48 |
-
target = target.unsqueeze(-1).unsqueeze(-1)
|
49 |
-
|
50 |
-
if train_cfg:
|
51 |
-
if cfg_prob > 0.0:
|
52 |
-
# Randomly mask embedding
|
53 |
-
batch_mask = rand_bool(shape=(B, 1, 1), proba=cfg_prob, device=target.device)
|
54 |
-
fixed_embedding = self.cfg_embedding(prompt).to(target.dtype)
|
55 |
-
prompt = torch.where(batch_mask, fixed_embedding, prompt)
|
56 |
-
|
57 |
-
prompt = self.context_embedding(prompt)
|
58 |
-
# fix the bug that prompt will copy dtype from target in diffusers
|
59 |
-
target = target.to(prompt.dtype)
|
60 |
-
|
61 |
-
output = self.unet(sample=target, timestep=t,
|
62 |
-
encoder_hidden_states=prompt,
|
63 |
-
encoder_attention_mask=prompt_mask)['sample']
|
64 |
-
|
65 |
-
return output.squeeze(-1).squeeze(-1)
|
66 |
-
|
67 |
-
|
68 |
-
if __name__ == "__main__":
|
69 |
-
with open('p2e_cross.yaml', 'r') as fp:
|
70 |
-
config = yaml.safe_load(fp)
|
71 |
-
device = 'cuda'
|
72 |
-
|
73 |
-
model = P2E_Cross(config['diffwrap']).to(device)
|
74 |
-
|
75 |
-
x = torch.rand((2, 256)).to(device)
|
76 |
-
t = torch.randint(0, 1000, (2,)).long().to(device)
|
77 |
-
prompt = torch.rand(2, 64, 768).to(device)
|
78 |
-
prompt_mask = torch.ones(2, 64).to(device)
|
79 |
-
|
80 |
-
output = model(x, t, prompt, prompt_mask, train_cfg=True, cfg_prob=0.25)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/src/model/__pycache__/model.cpython-310.pyc
DELETED
Binary file (3.2 kB)
|
|
dreamvoice/src/model/__pycache__/model.cpython-311.pyc
DELETED
Binary file (7.44 kB)
|
|
dreamvoice/src/model/__pycache__/model_cross.cpython-310.pyc
DELETED
Binary file (3.96 kB)
|
|
dreamvoice/src/model/__pycache__/model_cross.cpython-311.pyc
DELETED
Binary file (8.76 kB)
|
|
dreamvoice/src/model/__pycache__/model_cross.cpython-39.pyc
DELETED
Binary file (3.94 kB)
|
|
dreamvoice/src/model/__pycache__/p2e_cross.cpython-310.pyc
DELETED
Binary file (3.06 kB)
|
|
dreamvoice/src/model/__pycache__/p2e_cross.cpython-311.pyc
DELETED
Binary file (6.24 kB)
|
|
dreamvoice/src/modules/.ipynb_checkpoints/mel-checkpoint.py
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
import torchaudio
|
4 |
-
import torchaudio.transforms as transforms
|
5 |
-
|
6 |
-
|
7 |
-
class LogMelSpectrogram(torch.nn.Module):
|
8 |
-
def __init__(self, sr=24000, frame_length=1920, hop_length=480, n_mel=128, f_min=0, f_max=12000,):
|
9 |
-
super().__init__()
|
10 |
-
self.frame_length = frame_length
|
11 |
-
self.hop_length = hop_length
|
12 |
-
self.mel = transforms.MelSpectrogram(
|
13 |
-
sample_rate=sr,
|
14 |
-
n_fft=frame_length,
|
15 |
-
win_length=frame_length,
|
16 |
-
hop_length=hop_length,
|
17 |
-
center=False,
|
18 |
-
power=1.0,
|
19 |
-
norm="slaney",
|
20 |
-
n_mels=n_mel,
|
21 |
-
mel_scale="slaney",
|
22 |
-
f_min=f_min,
|
23 |
-
f_max=f_max
|
24 |
-
)
|
25 |
-
|
26 |
-
@torch.no_grad()
|
27 |
-
def forward(self, x, target_length=None):
|
28 |
-
x = F.pad(x, ((self.frame_length - self.hop_length) // 2,
|
29 |
-
(self.frame_length - self.hop_length) // 2), "reflect")
|
30 |
-
mel = self.mel(x)
|
31 |
-
|
32 |
-
target_length = mel.shape[-1] if target_length is None else target_length
|
33 |
-
logmel = torch.zeros(mel.shape[0], mel.shape[1], target_length).to(mel.device)
|
34 |
-
logmel[:, :, :mel.shape[2]] = mel
|
35 |
-
|
36 |
-
logmel = torch.log(torch.clamp(logmel, min=1e-5))
|
37 |
-
return logmel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/src/utils/.ipynb_checkpoints/__init__-checkpoint.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .utils import *
|
|
|
|
dreamvoice/src/utils/.ipynb_checkpoints/utils-checkpoint.py
DELETED
@@ -1,76 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import matplotlib.pyplot as plt
|
3 |
-
from scipy.io import wavfile
|
4 |
-
import torch
|
5 |
-
|
6 |
-
|
7 |
-
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
8 |
-
"""
|
9 |
-
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
10 |
-
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
11 |
-
"""
|
12 |
-
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
13 |
-
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
14 |
-
# rescale the results from guidance (fixes overexposure)
|
15 |
-
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
16 |
-
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
17 |
-
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
18 |
-
return noise_cfg
|
19 |
-
|
20 |
-
|
21 |
-
def scale_shift(x, scale, shift):
|
22 |
-
return (x+shift) * scale
|
23 |
-
|
24 |
-
|
25 |
-
def scale_shift_re(x, scale, shift):
|
26 |
-
return (x/scale) - shift
|
27 |
-
|
28 |
-
|
29 |
-
def align_seq(source, target_length, mapping_method='hard'):
|
30 |
-
source_len = source.shape[1]
|
31 |
-
if mapping_method == 'hard':
|
32 |
-
mapping_idx = np.round(np.arange(target_length) * source_len / target_length)
|
33 |
-
output = source[:, mapping_idx]
|
34 |
-
else:
|
35 |
-
# TBD
|
36 |
-
raise NotImplementedError
|
37 |
-
|
38 |
-
return output
|
39 |
-
|
40 |
-
|
41 |
-
def save_plot(tensor, savepath):
|
42 |
-
tensor = tensor.squeeze().cpu()
|
43 |
-
plt.style.use('default')
|
44 |
-
fig, ax = plt.subplots(figsize=(12, 3))
|
45 |
-
im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation='none')
|
46 |
-
plt.colorbar(im, ax=ax)
|
47 |
-
plt.tight_layout()
|
48 |
-
fig.canvas.draw()
|
49 |
-
plt.savefig(savepath)
|
50 |
-
plt.close()
|
51 |
-
|
52 |
-
|
53 |
-
def save_audio(file_path, sampling_rate, audio):
|
54 |
-
audio = np.clip(audio.cpu().squeeze().numpy(), -0.999, 0.999)
|
55 |
-
wavfile.write(file_path, sampling_rate, (audio * 32767).astype("int16"))
|
56 |
-
|
57 |
-
|
58 |
-
def minmax_norm_diff(tensor: torch.Tensor, vmax: float = 2.5, vmin: float = -12) -> torch.Tensor:
|
59 |
-
tensor = torch.clip(tensor, vmin, vmax)
|
60 |
-
tensor = 2 * (tensor - vmin) / (vmax - vmin) - 1
|
61 |
-
return tensor
|
62 |
-
|
63 |
-
|
64 |
-
def reverse_minmax_norm_diff(tensor: torch.Tensor, vmax: float = 2.5, vmin: float = -12) -> torch.Tensor:
|
65 |
-
tensor = torch.clip(tensor, -1.0, 1.0)
|
66 |
-
tensor = (tensor + 1) / 2
|
67 |
-
tensor = tensor * (vmax - vmin) + vmin
|
68 |
-
return tensor
|
69 |
-
|
70 |
-
|
71 |
-
if __name__ == "__main__":
|
72 |
-
|
73 |
-
a = torch.rand(2, 10)
|
74 |
-
target_len = 15
|
75 |
-
|
76 |
-
b = align_seq(a, target_len)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/src/utils/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (190 Bytes)
|
|
dreamvoice/src/utils/__pycache__/__init__.cpython-311.pyc
DELETED
Binary file (206 Bytes)
|
|
dreamvoice/src/utils/__pycache__/utils.cpython-310.pyc
DELETED
Binary file (2.71 kB)
|
|
dreamvoice/src/utils/__pycache__/utils.cpython-311.pyc
DELETED
Binary file (4.57 kB)
|
|