import numpy as np import matplotlib.pyplot as plt from scipy.io import wavfile import torch def minmax_norm_diff(tensor: torch.Tensor, vmax: float = 2.5, vmin: float = -12) -> torch.Tensor: tensor = torch.clip(tensor, vmin, vmax) tensor = 2 * (tensor - vmin) / (vmax - vmin) - 1 return tensor def reverse_minmax_norm_diff(tensor: torch.Tensor, vmax: float = 2.5, vmin: float = -12) -> torch.Tensor: tensor = torch.clip(tensor, -1.0, 1.0) tensor = (tensor + 1) / 2 tensor = tensor * (vmax - vmin) + vmin return tensor def scale_shift(x, scale, shift): return (x+shift) * scale def scale_shift_re(x, scale, shift): return (x/scale) - shift def align_seq(source, target_length, mapping_method='hard'): source_len = source.shape[1] if mapping_method == 'hard': mapping_idx = np.round(np.arange(target_length) * source_len / target_length) output = source[:, mapping_idx] else: # TBD raise NotImplementedError return output