## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "mzbac/Qwen2-7B-grammar-correction" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ { "role": "system", "content": "Please correct, polish, or translate the text delimited by triple backticks to standard English.", }, { "role": "user", "content": "Text=```neither 经理或员工 has been informed about the meeting```", }, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|im_end|>")] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.1, ) response = outputs[0] print(tokenizer.decode(response)) # <|im_start|>system # Please correct, polish, or translate the text delimited by triple backticks to standard English.<|im_end|> # <|im_start|>user # Text=```neither 经理或员工 has been informed about the meeting```<|im_end|> # <|im_start|>assistant # Output=Neither the manager nor the employees have been informed about the meeting.<|im_end|> ```