File size: 2,116 Bytes
897d942
 
 
 
 
 
 
5862801
 
 
 
 
 
 
897d942
 
 
 
 
 
 
5862801
897d942
4ebcb69
 
 
897d942
 
 
ab9ce41
897d942
 
 
 
 
 
 
 
 
 
 
 
 
 
478fb71
897d942
 
 
 
 
 
478fb71
bd43c62
6ee9f5c
0f955fa
2411f12
97f993f
91aca5e
2cf4e7c
26d3440
4ebcb69
897d942
 
 
 
478fb71
897d942
 
5862801
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: n3wtou/mt5-small-finedtuned-4-swahili
  results: []
datasets:
- csebuetnlp/xlsum
language:
- sw
metrics:
- f1
- rouge
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# n3wtou/mt5-small-finedtuned-4-swahili

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on csebuetnlp/xlsum dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.4419
- Validation Loss: 2.4809
- Epoch: 9

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 0.0003, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0003, 'decay_steps': 19900, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 100, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 5.6636     | 2.9818          | 0     |
| 3.7789     | 2.7822          | 1     |
| 3.3841     | 2.6840          | 2     |
| 3.1496     | 2.6238          | 3     |
| 2.9656     | 2.5816          | 4     |
| 2.8134     | 2.5522          | 5     |
| 2.6914     | 2.5315          | 6     |
| 2.5935     | 2.4980          | 7     |
| 2.5056     | 2.4764          | 8     |
| 2.4419     | 2.4809          | 9     |


### Framework versions

- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3