File size: 2,220 Bytes
13b8169 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- xlsum
metrics:
- rouge
model-index:
- name: mt5-swatf
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: xlsum
type: xlsum
config: swahili
split: test
args: swahili
metrics:
- name: Rouge1
type: rouge
value: 9.6904
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-swatf
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xlsum dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 9.6904
- Rouge2: 1.3302
- Rougel: 8.4948
- Rougelsum: 8.497
- Gen Len: 685.8156
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:|
| No log | 1.0 | 188 | nan | 9.6904 | 1.3302 | 8.4948 | 8.497 | 685.8156 |
| No log | 2.0 | 376 | nan | 9.6904 | 1.3302 | 8.4948 | 8.497 | 685.8156 |
| 0.0 | 3.0 | 564 | nan | 9.6904 | 1.3302 | 8.4948 | 8.497 | 685.8156 |
| 0.0 | 4.0 | 752 | nan | 9.6904 | 1.3302 | 8.4948 | 8.497 | 685.8156 |
| 0.0 | 5.0 | 940 | nan | 9.6904 | 1.3302 | 8.4948 | 8.497 | 685.8156 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|