update model card README.md
Browse files
README.md
CHANGED
@@ -16,12 +16,12 @@ model-index:
|
|
16 |
name: xlsum
|
17 |
type: xlsum
|
18 |
config: swahili
|
19 |
-
split:
|
20 |
args: swahili
|
21 |
metrics:
|
22 |
- name: Rouge1
|
23 |
type: rouge
|
24 |
-
value: 9.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,11 +32,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xlsum dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
- Loss: nan
|
35 |
-
- Rouge1: 9.
|
36 |
-
- Rouge2: 1.
|
37 |
-
- Rougel: 8.
|
38 |
-
- Rougelsum: 8.
|
39 |
-
- Gen Len:
|
40 |
|
41 |
## Model description
|
42 |
|
@@ -55,24 +55,31 @@ More information needed
|
|
55 |
### Training hyperparameters
|
56 |
|
57 |
The following hyperparameters were used during training:
|
58 |
-
- learning_rate:
|
59 |
-
- train_batch_size:
|
60 |
-
- eval_batch_size:
|
61 |
- seed: 42
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
-
- num_epochs:
|
65 |
- mixed_precision_training: Native AMP
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
-
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len
|
70 |
-
|
71 |
-
|
|
72 |
-
|
|
73 |
-
| 0.0 |
|
74 |
-
| 0.0 |
|
75 |
-
| 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
|
78 |
### Framework versions
|
|
|
16 |
name: xlsum
|
17 |
type: xlsum
|
18 |
config: swahili
|
19 |
+
split: validation
|
20 |
args: swahili
|
21 |
metrics:
|
22 |
- name: Rouge1
|
23 |
type: rouge
|
24 |
+
value: 9.7053
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xlsum dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
- Loss: nan
|
35 |
+
- Rouge1: 9.7053
|
36 |
+
- Rouge2: 1.3021
|
37 |
+
- Rougel: 8.4306
|
38 |
+
- Rougelsum: 8.4159
|
39 |
+
- Gen Len: 683.08
|
40 |
|
41 |
## Model description
|
42 |
|
|
|
55 |
### Training hyperparameters
|
56 |
|
57 |
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 4e-05
|
59 |
+
- train_batch_size: 4
|
60 |
+
- eval_batch_size: 3
|
61 |
- seed: 42
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
+
- num_epochs: 10
|
65 |
- mixed_precision_training: Native AMP
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
70 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
|
71 |
+
| 0.0 | 0.8 | 500 | nan | 9.7053 | 1.3021 | 8.4306 | 8.4159 | 683.08 |
|
72 |
+
| 0.0 | 1.6 | 1000 | nan | 9.7053 | 1.3021 | 8.4306 | 8.4159 | 683.08 |
|
73 |
+
| 0.0 | 2.4 | 1500 | nan | 9.7053 | 1.3021 | 8.4306 | 8.4159 | 683.08 |
|
74 |
+
| 0.0 | 3.2 | 2000 | nan | 9.7053 | 1.3021 | 8.4306 | 8.4159 | 683.08 |
|
75 |
+
| 0.0 | 4.0 | 2500 | nan | 9.7053 | 1.3021 | 8.4306 | 8.4159 | 683.08 |
|
76 |
+
| 0.0 | 4.8 | 3000 | nan | 9.7053 | 1.3021 | 8.4306 | 8.4159 | 683.08 |
|
77 |
+
| 0.0 | 5.6 | 3500 | nan | 9.7053 | 1.3021 | 8.4306 | 8.4159 | 683.08 |
|
78 |
+
| 0.0 | 6.4 | 4000 | nan | 9.7053 | 1.3021 | 8.4306 | 8.4159 | 683.08 |
|
79 |
+
| 0.0 | 7.2 | 4500 | nan | 9.7053 | 1.3021 | 8.4306 | 8.4159 | 683.08 |
|
80 |
+
| 0.0 | 8.0 | 5000 | nan | 9.7053 | 1.3021 | 8.4306 | 8.4159 | 683.08 |
|
81 |
+
| 0.0 | 8.8 | 5500 | nan | 9.7053 | 1.3021 | 8.4306 | 8.4159 | 683.08 |
|
82 |
+
| 0.0 | 9.6 | 6000 | nan | 9.7053 | 1.3021 | 8.4306 | 8.4159 | 683.08 |
|
83 |
|
84 |
|
85 |
### Framework versions
|