nachshonc commited on
Commit
5f376f9
·
1 Parent(s): 78f74c8

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1560.05 +/- 117.27
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:078575aae87bccaeb3b37704bfdc21bab7d513aabb899c1086a66c860a36ebb9
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b74ac9ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b74ac9d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b74ac9dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b74ac9e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3b74ac9ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3b74ac9f70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3b74acd040>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b74acd0d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3b74acd160>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b74acd1f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b74acd280>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b74acd310>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f3b74ac7720>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674797213078294756,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAN2ejz8S2DK/no3YPsEshD//wUc//B4BP95tnD+st5y/YOi0vDqNHr+m2Ni+nXaiP0hMIT9jwzi8kxcDv28X2r03qYQ/A88iv30oDD+8ABE/VHYMP8qofr8AedA/C6C9vnyhgr8EfBo/FGELPwD1bj+E6vs+08jmPDYsDT/QAYw/dkOiv03dDT8Q0c8+8+O2vuiapT6q+RJA5yKfP0OQnb3XBKy/NrhEPk4GP7/Da54+mEylPl9vhb87p0g+2dk9v4xgJ7/Gbk4+SFxmv/tKVzx8oYK/qhzUvxRhCz8WIYm/dvPXPvZM677r5QI/FAuvP2sU6j+dYA9A+Ua7Pqvakr/DEu0+AdkiQBQdVL/VxpI9T9+KP56jE0CiCUQ/nVYjPtTUrD/xwktA+mY1Pyzufb9jccw9sa6aP8UgkD9At2E+fKGCvwR8Gj9/Geu/APVuPwTrqr9qMxbA2LRhwHrC479DPPC/dWyZvwAAIEEQzB1BQ0nWvk4aIsCJnRVAUz4TQEZxAkCsrQy/9b80P148/7yzNTe83J4nvxur07+AmvA+qUM4vw60HzzUpWw+v+ypv3yhgr+qHNS/fxnrvwD1bj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA35M02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQoeVvQAAAACC9fq/AAAAAPVeyj0AAAAAUcDqPwAAAABxng4+AAAAAPO96z8AAAAAvmQ2PQAAAACvkN2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzJV8NAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCBdurwAAAAAtiTovwAAAADxe8y9AAAAAFg33T8AAAAA7qctvQAAAAAuae0/AAAAAJxTBr4AAAAAxdLsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGo+BTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA9thA+AAAAAMSF478AAAAAMNH5PQAAAAAPSOA/AAAAANacEj4AAAAAtHH5PwAAAAB5aDE9AAAAAGTi7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORvu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvJPGPQAAAADIC/i/AAAAADBEj70AAAAARRTdPwAAAACencG9AAAAACSI/z8AAAAAG157PQAAAAC2vPS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJDiR18stkGMAWyUTegDjAF0lEdAprYrI7vG63V9lChoBkdAlcMB/qgRLGgHTegDaAhHQKa4e58Sf191fZQoaAZHQJgF0Hu7YkFoB03oA2gIR0CmvyTdtVJddX2UKGgGR0CWFNtq59VnaAdN6ANoCEdApsAmU6gdwXV9lChoBkdAluue0b961WgHTegDaAhHQKbCMxC6Ymd1fZQoaAZHQJZoKxB3RohoB03oA2gIR0CmxIoKMNtqdX2UKGgGR0CWMYU/fO2RaAdN6ANoCEdApsysDMeOn3V9lChoBkdAk4qnEdeY2WgHTegDaAhHQKbONtALRa51fZQoaAZHQJVsO3b212JoB03oA2gIR0Cm0RE9Mbm2dX2UKGgGR0CSO5CbtqpMaAdN6ANoCEdAptNqtxMnJHV9lChoBkdAllEUjxCpm2gHTegDaAhHQKbZ/bKRuCR1fZQoaAZHQJf6Hwpe/pNoB03oA2gIR0Cm2v0QkHD8dX2UKGgGR0CVxixVAAyVaAdN6ANoCEdApt0Co2n89HV9lChoBkdAlYS6q4pc5mgHTegDaAhHQKbfV8ejmCB1fZQoaAZHQJSyj2rXDm9oB03oA2gIR0Cm5cS9M9KVdX2UKGgGR0CUZJVxS5y3aAdN6ANoCEdApubKBd2Pk3V9lChoBkdAl9Eqya/h2mgHTegDaAhHQKboxHp8neB1fZQoaAZHQJWqHPqs2ehoB03oA2gIR0Cm6x0JWvKVdX2UKGgGR0CTmIoFFDv3aAdN6ANoCEdApvFbLW7OFHV9lChoBkdAly8xIBikPGgHTegDaAhHQKbyUV9nbqR1fZQoaAZHQJaBTdYW+GpoB03oA2gIR0Cm9Er6LwWndX2UKGgGR0CVyq4tpVS5aAdN6ANoCEdApvaU3Kji43V9lChoBkdAlM6EX+ERJ2gHTegDaAhHQKb83hKlHjJ1fZQoaAZHQJS7L9ehPCVoB03oA2gIR0Cm/dzN2TxHdX2UKGgGR0CUr5814xDcaAdN6ANoCEdApv/NXaJyhnV9lChoBkdAlT0Ovt+kQGgHTegDaAhHQKcCC57w8W91fZQoaAZHQJNYsCLdeppoB03oA2gIR0CnCFZprULEdX2UKGgGR0CVMH3JPqLTaAdN6ANoCEdApwlKc3EQ5HV9lChoBkdAlNGRyfcvd2gHTegDaAhHQKcLOn6VMVV1fZQoaAZHQJL2gFNcnmdoB03oA2gIR0CnDYId2gWadX2UKGgGR0CXepHqu8sdaAdN6ANoCEdApxPXV3EAHXV9lChoBkdAlifg84gieWgHTegDaAhHQKcU1EuQIUt1fZQoaAZHQJU+WT1TR6ZoB03oA2gIR0CnFtOYIBzWdX2UKGgGR0CVY6ktVaOhaAdN6ANoCEdApxktGgBcRnV9lChoBkdAldw3UtqYZ2gHTegDaAhHQKcfePKdQO51fZQoaAZHQJYDagJ1JUZoB03oA2gIR0CnIHNXgccVdX2UKGgGR0CUnQJgssg/aAdN6ANoCEdApyJ0PhAGCHV9lChoBkdAlot5sO5J9WgHTegDaAhHQKckwbHZK4B1fZQoaAZHQJa4hN5+pfhoB03oA2gIR0CnKxqv3ai9dX2UKGgGR0CXPwimEXchaAdN6ANoCEdApywZ5xBE8nV9lChoBkdAlRZOc6Nly2gHTegDaAhHQKcuDZamoBJ1fZQoaAZHQJYVFU3n6mBoB03oA2gIR0CnMGRmbsnidX2UKGgGR0CYc7BnSOR1aAdN6ANoCEdApzbXDJlrdnV9lChoBkdAlVJV2eQMhGgHTegDaAhHQKc301eBxxV1fZQoaAZHQJZXTFUADJVoB03oA2gIR0CnOdbwSamXdX2UKGgGR0CWawNh3JPqaAdN6ANoCEdApzwkSTQmeHV9lChoBkdAd4arBj4Ho2gHTegDaAhHQKdCmDoQnQZ1fZQoaAZHQIHJoSnLq2VoB03oA2gIR0CnQ5Vp9JBgdX2UKGgGR0CXd+oB7u2JaAdN6ANoCEdAp0WKPsAvMHV9lChoBkdAl8jee4Cp32gHTegDaAhHQKdH3rzoUzt1fZQoaAZHQJZGZOARTS9oB03oA2gIR0CnTlkv9LpSdX2UKGgGR0CW7cyxA0KraAdN6ANoCEdAp09cyBTXKHV9lChoBkdAl9YWBreqJmgHTegDaAhHQKdRZubZvk11fZQoaAZHQJguHUCq6vtoB03oA2gIR0CnU8ODSPU8dX2UKGgGR0CWwzKRuCPIaAdN6ANoCEdAp1osPtlZo3V9lChoBkdAl27491U2k2gHTegDaAhHQKdbMnogV451fZQoaAZHQJgKpw97ngZoB03oA2gIR0CnXSAPEsJ6dX2UKGgGR0CWtMa8pTddaAdN6ANoCEdAp1+UkWykbnV9lChoBkdAk0fsI3R5T2gHTegDaAhHQKdl6K1og3d1fZQoaAZHQJTNswM6RyRoB03oA2gIR0CnZtsOG0u2dX2UKGgGR0CY/0Of/WDpaAdN6ANoCEdAp2jLQ7cO9XV9lChoBkdAlx744lyBCmgHTegDaAhHQKdrEq0+kgx1fZQoaAZHQJW2cCDEm6ZoB03oA2gIR0CncXAOavzOdX2UKGgGR0CToi4Oc2BKaAdN6ANoCEdAp3JszZYgaHV9lChoBkdAlkvi4z7/GWgHTegDaAhHQKd0aJ8fFJh1fZQoaAZHQJYryg8KXv9oB03oA2gIR0CndrkOAiFCdX2UKGgGR0CXBdKaXrt3aAdN6ANoCEdAp30fUc4o7XV9lChoBkdAl9FaHfuTimgHTegDaAhHQKd+IXv6TGJ1fZQoaAZHQJgdfzPKMehoB03oA2gIR0CngB4HHFP0dX2UKGgGR0CWzC2Dg62faAdN6ANoCEdAp4JvV7Qb/HV9lChoBkdAlbo9LQHAymgHTegDaAhHQKeI03d9Dx91fZQoaAZHQJeKAKArhBJoB03oA2gIR0Cnic1BMSK4dX2UKGgGR0CV82yI55quaAdN6ANoCEdAp4vGRHPNV3V9lChoBkdAl2uuCkGiYmgHTegDaAhHQKeODgRbr1N1fZQoaAZHQJMa+N2ki2VoB03oA2gIR0CnlHC1RceKdX2UKGgGR0CXruOjZcs2aAdN6ANoCEdAp5VqWeHzpXV9lChoBkdAlYv+pCKJmGgHTegDaAhHQKeXXN2TxG51fZQoaAZHQJL4yeQMhHNoB03oA2gIR0CnmbZNoJzDdX2UKGgGR0CVblhQm/nGaAdN6ANoCEdAp6AeYfGMoHV9lChoBkdAlzi8O9WZJGgHTegDaAhHQKehGK0lZ5l1fZQoaAZHQJUg421lXiloB03oA2gIR0CnoxK8lHBldX2UKGgGR0CSFqjHXEqEaAdN6ANoCEdAp6VqNlyzX3V9lChoBkdAclq/vv0AcWgHTZkBaAhHQKel4zHjp9t1fZQoaAZHQJhaj3XZoPFoB03oA2gIR0Cnq8owEhaDdX2UKGgGR0CXYATRYzSDaAdN6ANoCEdAp665UPxx1nV9lChoBkdAmDMvLLZBcGgHTegDaAhHQKexIVLzwtt1fZQoaAZHQJX0K+ZgG8poB03oA2gIR0CnsZdGy5ZsdX2UKGgGR0CYhs3SKFZgaAdN6ANoCEdAp7eKBGx2S3V9lChoBkdAl213fyf+TGgHTegDaAhHQKe6hO8Cgbp1fZQoaAZHQJbluqR2bG5oB03oA2gIR0CnvNJ8neBQdX2UKGgGR0CXyn5p8F6iaAdN6ANoCEdAp71LV6NVBHV9lChoBkdAlhVUKJEYwmgHTegDaAhHQKfDOIeHSF51fZQoaAZHQJfstFSbYsdoB03oA2gIR0CnxiW5QP7OdX2UKGgGR0CZ+EvsJIDpaAdN6ANoCEdAp8hunEVFhHV9lChoBkdAmJK2nbZezGgHTegDaAhHQKfI5IEKVpt1fZQoaAZHQJnXk8B+4LFoB03oA2gIR0CnztRPXTVldX2UKGgGR0CXa/xjJ+2FaAdN6ANoCEdAp9HU+u/1x3V9lChoBkdAlmrnRw6ySmgHTegDaAhHQKfUMS2Yv391fZQoaAZHQJkRA1O0svtoB03oA2gIR0Cn1KyDAaegdX2UKGgGR0CWU51M/QjVaAdN6ANoCEdAp9qaUaAFxHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cb0479a4c3c1baa393438365754f44344a447c48f7408a1fd7786f41ba60ad1
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5f2414f03894d59fc016925892391b0ede3ff69b90cad540f0c50190b38d691
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b74ac9ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b74ac9d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b74ac9dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b74ac9e50>", "_build": "<function ActorCriticPolicy._build at 0x7f3b74ac9ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3b74ac9f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3b74acd040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b74acd0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3b74acd160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b74acd1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b74acd280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b74acd310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3b74ac7720>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674797213078294756, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAN2ejz8S2DK/no3YPsEshD//wUc//B4BP95tnD+st5y/YOi0vDqNHr+m2Ni+nXaiP0hMIT9jwzi8kxcDv28X2r03qYQ/A88iv30oDD+8ABE/VHYMP8qofr8AedA/C6C9vnyhgr8EfBo/FGELPwD1bj+E6vs+08jmPDYsDT/QAYw/dkOiv03dDT8Q0c8+8+O2vuiapT6q+RJA5yKfP0OQnb3XBKy/NrhEPk4GP7/Da54+mEylPl9vhb87p0g+2dk9v4xgJ7/Gbk4+SFxmv/tKVzx8oYK/qhzUvxRhCz8WIYm/dvPXPvZM677r5QI/FAuvP2sU6j+dYA9A+Ua7Pqvakr/DEu0+AdkiQBQdVL/VxpI9T9+KP56jE0CiCUQ/nVYjPtTUrD/xwktA+mY1Pyzufb9jccw9sa6aP8UgkD9At2E+fKGCvwR8Gj9/Geu/APVuPwTrqr9qMxbA2LRhwHrC479DPPC/dWyZvwAAIEEQzB1BQ0nWvk4aIsCJnRVAUz4TQEZxAkCsrQy/9b80P148/7yzNTe83J4nvxur07+AmvA+qUM4vw60HzzUpWw+v+ypv3yhgr+qHNS/fxnrvwD1bj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA35M02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQoeVvQAAAACC9fq/AAAAAPVeyj0AAAAAUcDqPwAAAABxng4+AAAAAPO96z8AAAAAvmQ2PQAAAACvkN2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzJV8NAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCBdurwAAAAAtiTovwAAAADxe8y9AAAAAFg33T8AAAAA7qctvQAAAAAuae0/AAAAAJxTBr4AAAAAxdLsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGo+BTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA9thA+AAAAAMSF478AAAAAMNH5PQAAAAAPSOA/AAAAANacEj4AAAAAtHH5PwAAAAB5aDE9AAAAAGTi7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORvu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvJPGPQAAAADIC/i/AAAAADBEj70AAAAARRTdPwAAAACencG9AAAAACSI/z8AAAAAG157PQAAAAC2vPS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJDiR18stkGMAWyUTegDjAF0lEdAprYrI7vG63V9lChoBkdAlcMB/qgRLGgHTegDaAhHQKa4e58Sf191fZQoaAZHQJgF0Hu7YkFoB03oA2gIR0CmvyTdtVJddX2UKGgGR0CWFNtq59VnaAdN6ANoCEdApsAmU6gdwXV9lChoBkdAluue0b961WgHTegDaAhHQKbCMxC6Ymd1fZQoaAZHQJZoKxB3RohoB03oA2gIR0CmxIoKMNtqdX2UKGgGR0CWMYU/fO2RaAdN6ANoCEdApsysDMeOn3V9lChoBkdAk4qnEdeY2WgHTegDaAhHQKbONtALRa51fZQoaAZHQJVsO3b212JoB03oA2gIR0Cm0RE9Mbm2dX2UKGgGR0CSO5CbtqpMaAdN6ANoCEdAptNqtxMnJHV9lChoBkdAllEUjxCpm2gHTegDaAhHQKbZ/bKRuCR1fZQoaAZHQJf6Hwpe/pNoB03oA2gIR0Cm2v0QkHD8dX2UKGgGR0CVxixVAAyVaAdN6ANoCEdApt0Co2n89HV9lChoBkdAlYS6q4pc5mgHTegDaAhHQKbfV8ejmCB1fZQoaAZHQJSyj2rXDm9oB03oA2gIR0Cm5cS9M9KVdX2UKGgGR0CUZJVxS5y3aAdN6ANoCEdApubKBd2Pk3V9lChoBkdAl9Eqya/h2mgHTegDaAhHQKboxHp8neB1fZQoaAZHQJWqHPqs2ehoB03oA2gIR0Cm6x0JWvKVdX2UKGgGR0CTmIoFFDv3aAdN6ANoCEdApvFbLW7OFHV9lChoBkdAly8xIBikPGgHTegDaAhHQKbyUV9nbqR1fZQoaAZHQJaBTdYW+GpoB03oA2gIR0Cm9Er6LwWndX2UKGgGR0CVyq4tpVS5aAdN6ANoCEdApvaU3Kji43V9lChoBkdAlM6EX+ERJ2gHTegDaAhHQKb83hKlHjJ1fZQoaAZHQJS7L9ehPCVoB03oA2gIR0Cm/dzN2TxHdX2UKGgGR0CUr5814xDcaAdN6ANoCEdApv/NXaJyhnV9lChoBkdAlT0Ovt+kQGgHTegDaAhHQKcCC57w8W91fZQoaAZHQJNYsCLdeppoB03oA2gIR0CnCFZprULEdX2UKGgGR0CVMH3JPqLTaAdN6ANoCEdApwlKc3EQ5HV9lChoBkdAlNGRyfcvd2gHTegDaAhHQKcLOn6VMVV1fZQoaAZHQJL2gFNcnmdoB03oA2gIR0CnDYId2gWadX2UKGgGR0CXepHqu8sdaAdN6ANoCEdApxPXV3EAHXV9lChoBkdAlifg84gieWgHTegDaAhHQKcU1EuQIUt1fZQoaAZHQJU+WT1TR6ZoB03oA2gIR0CnFtOYIBzWdX2UKGgGR0CVY6ktVaOhaAdN6ANoCEdApxktGgBcRnV9lChoBkdAldw3UtqYZ2gHTegDaAhHQKcfePKdQO51fZQoaAZHQJYDagJ1JUZoB03oA2gIR0CnIHNXgccVdX2UKGgGR0CUnQJgssg/aAdN6ANoCEdApyJ0PhAGCHV9lChoBkdAlot5sO5J9WgHTegDaAhHQKckwbHZK4B1fZQoaAZHQJa4hN5+pfhoB03oA2gIR0CnKxqv3ai9dX2UKGgGR0CXPwimEXchaAdN6ANoCEdApywZ5xBE8nV9lChoBkdAlRZOc6Nly2gHTegDaAhHQKcuDZamoBJ1fZQoaAZHQJYVFU3n6mBoB03oA2gIR0CnMGRmbsnidX2UKGgGR0CYc7BnSOR1aAdN6ANoCEdApzbXDJlrdnV9lChoBkdAlVJV2eQMhGgHTegDaAhHQKc301eBxxV1fZQoaAZHQJZXTFUADJVoB03oA2gIR0CnOdbwSamXdX2UKGgGR0CWawNh3JPqaAdN6ANoCEdApzwkSTQmeHV9lChoBkdAd4arBj4Ho2gHTegDaAhHQKdCmDoQnQZ1fZQoaAZHQIHJoSnLq2VoB03oA2gIR0CnQ5Vp9JBgdX2UKGgGR0CXd+oB7u2JaAdN6ANoCEdAp0WKPsAvMHV9lChoBkdAl8jee4Cp32gHTegDaAhHQKdH3rzoUzt1fZQoaAZHQJZGZOARTS9oB03oA2gIR0CnTlkv9LpSdX2UKGgGR0CW7cyxA0KraAdN6ANoCEdAp09cyBTXKHV9lChoBkdAl9YWBreqJmgHTegDaAhHQKdRZubZvk11fZQoaAZHQJguHUCq6vtoB03oA2gIR0CnU8ODSPU8dX2UKGgGR0CWwzKRuCPIaAdN6ANoCEdAp1osPtlZo3V9lChoBkdAl27491U2k2gHTegDaAhHQKdbMnogV451fZQoaAZHQJgKpw97ngZoB03oA2gIR0CnXSAPEsJ6dX2UKGgGR0CWtMa8pTddaAdN6ANoCEdAp1+UkWykbnV9lChoBkdAk0fsI3R5T2gHTegDaAhHQKdl6K1og3d1fZQoaAZHQJTNswM6RyRoB03oA2gIR0CnZtsOG0u2dX2UKGgGR0CY/0Of/WDpaAdN6ANoCEdAp2jLQ7cO9XV9lChoBkdAlx744lyBCmgHTegDaAhHQKdrEq0+kgx1fZQoaAZHQJW2cCDEm6ZoB03oA2gIR0CncXAOavzOdX2UKGgGR0CToi4Oc2BKaAdN6ANoCEdAp3JszZYgaHV9lChoBkdAlkvi4z7/GWgHTegDaAhHQKd0aJ8fFJh1fZQoaAZHQJYryg8KXv9oB03oA2gIR0CndrkOAiFCdX2UKGgGR0CXBdKaXrt3aAdN6ANoCEdAp30fUc4o7XV9lChoBkdAl9FaHfuTimgHTegDaAhHQKd+IXv6TGJ1fZQoaAZHQJgdfzPKMehoB03oA2gIR0CngB4HHFP0dX2UKGgGR0CWzC2Dg62faAdN6ANoCEdAp4JvV7Qb/HV9lChoBkdAlbo9LQHAymgHTegDaAhHQKeI03d9Dx91fZQoaAZHQJeKAKArhBJoB03oA2gIR0Cnic1BMSK4dX2UKGgGR0CV82yI55quaAdN6ANoCEdAp4vGRHPNV3V9lChoBkdAl2uuCkGiYmgHTegDaAhHQKeODgRbr1N1fZQoaAZHQJMa+N2ki2VoB03oA2gIR0CnlHC1RceKdX2UKGgGR0CXruOjZcs2aAdN6ANoCEdAp5VqWeHzpXV9lChoBkdAlYv+pCKJmGgHTegDaAhHQKeXXN2TxG51fZQoaAZHQJL4yeQMhHNoB03oA2gIR0CnmbZNoJzDdX2UKGgGR0CVblhQm/nGaAdN6ANoCEdAp6AeYfGMoHV9lChoBkdAlzi8O9WZJGgHTegDaAhHQKehGK0lZ5l1fZQoaAZHQJUg421lXiloB03oA2gIR0CnoxK8lHBldX2UKGgGR0CSFqjHXEqEaAdN6ANoCEdAp6VqNlyzX3V9lChoBkdAclq/vv0AcWgHTZkBaAhHQKel4zHjp9t1fZQoaAZHQJhaj3XZoPFoB03oA2gIR0Cnq8owEhaDdX2UKGgGR0CXYATRYzSDaAdN6ANoCEdAp665UPxx1nV9lChoBkdAmDMvLLZBcGgHTegDaAhHQKexIVLzwtt1fZQoaAZHQJX0K+ZgG8poB03oA2gIR0CnsZdGy5ZsdX2UKGgGR0CYhs3SKFZgaAdN6ANoCEdAp7eKBGx2S3V9lChoBkdAl213fyf+TGgHTegDaAhHQKe6hO8Cgbp1fZQoaAZHQJbluqR2bG5oB03oA2gIR0CnvNJ8neBQdX2UKGgGR0CXyn5p8F6iaAdN6ANoCEdAp71LV6NVBHV9lChoBkdAlhVUKJEYwmgHTegDaAhHQKfDOIeHSF51fZQoaAZHQJfstFSbYsdoB03oA2gIR0CnxiW5QP7OdX2UKGgGR0CZ+EvsJIDpaAdN6ANoCEdAp8hunEVFhHV9lChoBkdAmJK2nbZezGgHTegDaAhHQKfI5IEKVpt1fZQoaAZHQJnXk8B+4LFoB03oA2gIR0CnztRPXTVldX2UKGgGR0CXa/xjJ+2FaAdN6ANoCEdAp9HU+u/1x3V9lChoBkdAlmrnRw6ySmgHTegDaAhHQKfUMS2Yv391fZQoaAZHQJkRA1O0svtoB03oA2gIR0Cn1KyDAaegdX2UKGgGR0CWU51M/QjVaAdN6ANoCEdAp9qaUaAFxHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:101abaefe91091dc3d4fd7cc0eb273f974f6f66b99ad7a74f7fd3cda536f3e80
3
+ size 1005565
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1560.0488844475926, "std_reward": 117.272213015873, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-27T06:21:08.206863"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:297b733fbb63498b2f8aa9f2dd71c3a917706db2cec07661c05bde2828e70736
3
+ size 2136