File size: 1,506 Bytes
c793b3a
84ccdc8
c793b3a
 
 
 
 
84ccdc8
c793b3a
 
 
 
 
 
84ccdc8
c793b3a
84ccdc8
c793b3a
84ccdc8
 
c793b3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84ccdc8
 
c793b3a
 
 
 
84ccdc8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---

base_model: google/reformer-crime-and-punishment
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: reformer_model
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# reformer_model



This model is a fine-tuned version of [google/reformer-crime-and-punishment](https://huggingface.co/google/reformer-crime-and-punishment) on the None dataset.

It achieves the following results on the evaluation set:

- Loss: 0.6693

- Accuracy: 0.561



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy |

|:-------------:|:-----:|:----:|:---------------:|:--------:|

| 0.6841        | 1.0   | 625  | 0.6725          | 0.559    |

| 0.6789        | 2.0   | 1250 | 0.6693          | 0.561    |





### Framework versions



- Transformers 4.40.2

- Pytorch 2.3.0+cpu

- Datasets 2.19.1

- Tokenizers 0.19.1