End of training
Browse files- README.md +82 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Rajan/NepaliBERT
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: nepali_complaints_classification_nepbert3
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# nepali_complaints_classification_nepbert3
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [Rajan/NepaliBERT](https://huggingface.co/Rajan/NepaliBERT) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2687
|
20 |
+
- Accuracy: 0.9494
|
21 |
+
- F1-score: 0.9483
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-05
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 16
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_steps: 50
|
47 |
+
- num_epochs: 5
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
|
53 |
+
| 1.4921 | 0.22 | 500 | 0.8642 | 0.7235 | 0.7143 |
|
54 |
+
| 0.7781 | 0.45 | 1000 | 0.6241 | 0.7974 | 0.7923 |
|
55 |
+
| 0.5865 | 0.67 | 1500 | 0.5342 | 0.8243 | 0.8125 |
|
56 |
+
| 0.4625 | 0.89 | 2000 | 0.4250 | 0.8576 | 0.8553 |
|
57 |
+
| 0.3648 | 1.11 | 2500 | 0.3856 | 0.8759 | 0.8725 |
|
58 |
+
| 0.3001 | 1.34 | 3000 | 0.3424 | 0.8899 | 0.8891 |
|
59 |
+
| 0.2723 | 1.56 | 3500 | 0.3199 | 0.9007 | 0.8981 |
|
60 |
+
| 0.2538 | 1.78 | 4000 | 0.2898 | 0.9085 | 0.9066 |
|
61 |
+
| 0.231 | 2.01 | 4500 | 0.2676 | 0.9203 | 0.9189 |
|
62 |
+
| 0.1478 | 2.23 | 5000 | 0.3029 | 0.9210 | 0.9187 |
|
63 |
+
| 0.1666 | 2.45 | 5500 | 0.2580 | 0.9283 | 0.9271 |
|
64 |
+
| 0.1519 | 2.67 | 6000 | 0.2573 | 0.9308 | 0.9292 |
|
65 |
+
| 0.1498 | 2.9 | 6500 | 0.2746 | 0.9328 | 0.9306 |
|
66 |
+
| 0.1112 | 3.12 | 7000 | 0.2564 | 0.9398 | 0.9389 |
|
67 |
+
| 0.0903 | 3.34 | 7500 | 0.2726 | 0.9403 | 0.9393 |
|
68 |
+
| 0.1036 | 3.57 | 8000 | 0.2664 | 0.9398 | 0.9385 |
|
69 |
+
| 0.1043 | 3.79 | 8500 | 0.2614 | 0.9459 | 0.9447 |
|
70 |
+
| 0.0972 | 4.01 | 9000 | 0.2499 | 0.9453 | 0.9443 |
|
71 |
+
| 0.0663 | 4.23 | 9500 | 0.2643 | 0.9469 | 0.9458 |
|
72 |
+
| 0.0683 | 4.46 | 10000 | 0.2688 | 0.9474 | 0.9462 |
|
73 |
+
| 0.0671 | 4.68 | 10500 | 0.2657 | 0.9491 | 0.9481 |
|
74 |
+
| 0.0605 | 4.9 | 11000 | 0.2687 | 0.9494 | 0.9483 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.38.2
|
80 |
+
- Pytorch 2.1.0+cu121
|
81 |
+
- Datasets 2.18.0
|
82 |
+
- Tokenizers 0.15.2
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 327711728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3d564c5b982ed43118ad5f9bdf89d6f6929fc8349a856c57935a4de39284ad1
|
3 |
size 327711728
|