--- library_name: transformers language: - jpn base_model: pyannote/speaker-diarization-3.1 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-jpn results: [] --- # speaker-segmentation-fine-tuned-callhome-jpn This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set: - Loss: 0.3412 - Der: 0.1116 - False Alarm: 0.0194 - Missed Detection: 0.0267 - Confusion: 0.0655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.3963 | 1.0 | 755 | 0.4401 | 0.1468 | 0.0203 | 0.0353 | 0.0912 | | 0.3814 | 2.0 | 1510 | 0.3740 | 0.1222 | 0.0185 | 0.0310 | 0.0727 | | 0.3112 | 3.0 | 2265 | 0.3522 | 0.1192 | 0.0209 | 0.0263 | 0.0720 | | 0.3186 | 4.0 | 3020 | 0.3417 | 0.1127 | 0.0188 | 0.0275 | 0.0664 | | 0.3093 | 5.0 | 3775 | 0.3412 | 0.1116 | 0.0194 | 0.0267 | 0.0655 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.1 - Tokenizers 0.21.0