--- library_name: transformers license: cc0-1.0 base_model: bionlp/bluebert_pubmed_uncased_L-24_H-1024_A-16 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: medical-ner-bluebert results: [] --- # medical-ner-bluebert This model is a fine-tuned version of [bionlp/bluebert_pubmed_uncased_L-24_H-1024_A-16](https://huggingface.co/bionlp/bluebert_pubmed_uncased_L-24_H-1024_A-16) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0894 - Precision: 0.9365 - Recall: 0.9705 - F1: 0.9532 - Accuracy: 0.9810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 90 | 0.7138 | 0.5501 | 0.6082 | 0.5777 | 0.7757 | | No log | 2.0 | 180 | 0.6697 | 0.5391 | 0.7574 | 0.6298 | 0.7863 | | No log | 3.0 | 270 | 0.4996 | 0.6284 | 0.8024 | 0.7048 | 0.8429 | | No log | 4.0 | 360 | 0.3957 | 0.6779 | 0.8332 | 0.7476 | 0.8760 | | No log | 5.0 | 450 | 0.2886 | 0.7603 | 0.8658 | 0.8096 | 0.9160 | | 0.4932 | 6.0 | 540 | 0.2345 | 0.8026 | 0.8839 | 0.8413 | 0.9321 | | 0.4932 | 7.0 | 630 | 0.2061 | 0.8290 | 0.9121 | 0.8686 | 0.9419 | | 0.4932 | 8.0 | 720 | 0.1715 | 0.8537 | 0.9226 | 0.8868 | 0.9518 | | 0.4932 | 9.0 | 810 | 0.1454 | 0.8701 | 0.9374 | 0.9025 | 0.9603 | | 0.4932 | 10.0 | 900 | 0.1422 | 0.8857 | 0.9437 | 0.9137 | 0.9635 | | 0.4932 | 11.0 | 990 | 0.1134 | 0.9081 | 0.9516 | 0.9293 | 0.9718 | | 0.0935 | 12.0 | 1080 | 0.1147 | 0.9075 | 0.9582 | 0.9322 | 0.9722 | | 0.0935 | 13.0 | 1170 | 0.1039 | 0.9165 | 0.9616 | 0.9385 | 0.9757 | | 0.0935 | 14.0 | 1260 | 0.0978 | 0.9256 | 0.9658 | 0.9453 | 0.9774 | | 0.0935 | 15.0 | 1350 | 0.0925 | 0.9283 | 0.9671 | 0.9473 | 0.9797 | | 0.0935 | 16.0 | 1440 | 0.0873 | 0.9378 | 0.9679 | 0.9526 | 0.9813 | | 0.0301 | 17.0 | 1530 | 0.0927 | 0.9334 | 0.9703 | 0.9515 | 0.9803 | | 0.0301 | 18.0 | 1620 | 0.0903 | 0.9355 | 0.97 | 0.9525 | 0.9804 | | 0.0301 | 19.0 | 1710 | 0.0890 | 0.9373 | 0.9711 | 0.9539 | 0.9811 | | 0.0301 | 20.0 | 1800 | 0.0894 | 0.9365 | 0.9705 | 0.9532 | 0.9810 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3