File size: 1,137 Bytes
9ec8347 e5fa3b8 9ec8347 e5fa3b8 9ec8347 e5fa3b8 9ec8347 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
language:
- multilingual
- ny
- kg
- kmb
- rw
- ln
- lua
- lg
- nso
- rn
- st
- sw
- ss
- ts
- tn
- tum
- umb
- xh
- zu
- fr
- en
license: apache-2.0
---
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='nairaxo/toumbert')
>>> unmasker("rais wa [MASK] ya tanzania.")
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('nairaxo/toumbert')
model = BertModel.from_pretrained("nairaxo/toumbert")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('nairaxo/toumbert')
model = TFBertModel.from_pretrained("nairaxo/toumbert")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
``` |