--- language: - multilingual - ny - kg - kmb - rw - ln - lua - lg - nso - rn - st - sw - ss - ts - tn - tum - umb - xh - zu - fr - en license: apache-2.0 --- ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='nairaxo/toumbert') >>> unmasker("rais wa [MASK] ya tanzania.") ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('nairaxo/toumbert') model = BertModel.from_pretrained("nairaxo/toumbert") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('nairaxo/toumbert') model = TFBertModel.from_pretrained("nairaxo/toumbert") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ```