mitre_913m / tokenization_mitre.py
zhiqu22
update codes
0517e25
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import sentencepiece
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.utils import logging
logger = logging.get_logger(__name__)
SPIECE_UNDERLINE = "▁"
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"spm_file": "mitre_spm.model",
"tokenizer_config_file": "tokenizer_config.json",
}
# follow iso639-2
FAIRSEQ_LANGUAGE_CODES = ["en", "de", "nl", "sv", "da", "af", "fr", "es", "it", "pt", "ro", "ru", "cs", "pl", "bg", "uk", "id", "jv", "ms", "tl", "ja", "zh", "ko", "vi"]
# This is the tokenizer of MITRE.
# This code is modified from transformers.models.m2m_100.tokenization_m2m_100.M2M100Tokenizer
class MitreTokenizer(PreTrainedTokenizer):
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
prefix_tokens: List[int] = []
suffix_tokens: List[int] = []
def __init__(
self,
vocab_file,
spm_file,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
pad_token="<pad>",
unk_token="<unk>",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
fairseq_language_code = FAIRSEQ_LANGUAGE_CODES
self.lang_code_to_token = {lang_code: f"__{lang_code}__" for lang_code in fairseq_language_code}
additional_special_tokens = kwargs.pop("additional_special_tokens", [])
for lang_code in fairseq_language_code:
token = self.get_lang_token(lang_code)
if token not in additional_special_tokens:
additional_special_tokens.append(token)
self.vocab_file = vocab_file
self.encoder = load_json(vocab_file)
self.decoder = {v: k for k, v in self.encoder.items()}
self.spm_file = spm_file
self.sp_model = load_spm(spm_file, self.sp_model_kwargs)
self.encoder_size = len(self.encoder)
self.lang_token_to_id = {
self.get_lang_token(lang_code): self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code)
}
self.lang_code_to_id = {lang_code: self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code)}
self.id_to_lang_token = {v: k for k, v in self.lang_token_to_id.items()}
# default
self.tgt_lang = "en"
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
unk_token=unk_token,
pad_token=pad_token,
sp_model_kwargs=self.sp_model_kwargs,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
@property
def vocab_size(self) -> int:
return len(self.encoder)
def get_vocab(self) -> Dict:
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text: str) -> List[str]:
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
if token in self.lang_token_to_id:
return self.lang_token_to_id[token]
return self.encoder.get(token, self.encoder[self.unk_token])
def _convert_id_to_token(self, index: int) -> str:
"""Converts an index (integer) in a token (str) using the decoder."""
if index in self.id_to_lang_token:
return self.id_to_lang_token[index]
return self.decoder.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(current_sub_tokens) + token
current_sub_tokens = []
else:
current_sub_tokens.append(token)
out_string += self.sp_model.decode(current_sub_tokens)
return out_string.strip()
def __getstate__(self) -> Dict:
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d: Dict) -> None:
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = load_spm(self.spm_file, self.sp_model_kwargs)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
if token_ids_1 is None:
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
def _switch_to_input_mode(self):
self.set_tgt_lang_special_tokens(self.tgt_lang)
def _switch_to_target_mode(self):
self.clear_lang_special_tokens()
def clear_lang_special_tokens(self) -> None:
self.prefix_tokens = []
self.suffix_tokens = [self.eos_token_id]
def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None:
"""Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code]."""
lang_token = self.get_lang_token(tgt_lang)
self.cur_lang_id = self.lang_token_to_id[lang_token]
self.prefix_tokens = [self.cur_lang_id]
self.suffix_tokens = [self.eos_token_id]
def get_lang_token(self, lang: str) -> str:
return self.lang_code_to_token[lang]
def get_lang_id(self, lang: str) -> int:
lang_token = self.get_lang_token(lang)
return self.lang_token_to_id[lang_token]
def encode_source_tokens_to_input_ids(self, inputs, target_language="en"):
"""pads + target language id + source tokens id + eos id"""
self.tgt_lang = target_language
input_ids = self.__call__(inputs, add_special_tokens=True, padding_side='left', padding=True, return_attention_mask=False, return_tensors="pt")
return input_ids["input_ids"]
def encode_source_tokens_to_input_ids_with_different_tags(self, inputs_text, target_languages_list: list):
"""
'encode_source_tokens_to_input_ids' only supports a language tag,
but sevenral in a batch could have different language tags.
"""
self.tgt_lang = "en"
input_ids = self.__call__(inputs_text, add_special_tokens=True, padding_side='left', padding=True, return_attention_mask=False, return_tensors="pt")["input_ids"]
_, max_indices = torch.max(input_ids, dim=1)
input_ids[torch.arange(max_indices.shape[0]), max_indices] = torch.LongTensor([self.lang_token_to_id[self.get_lang_token(lang_code)] for lang_code in target_languages_list])
return input_ids
def encode_target_tokens_to_labels(self, inputs_text):
"""target tokens id + eos id + pads"""
input_ids = self.__call__(text_target=inputs_text, add_special_tokens=True, padding_side='right', padding=True, return_attention_mask=False, return_tensors="pt")
return input_ids["input_ids"]
def encode_target_tokens_to_input_ids(self, inputs_text):
"""eos id + target tokens id + pads, namely, left shifted"""
input_ids = self.__call__(text_target=inputs_text, add_special_tokens=False, padding_side='right', padding=True, return_attention_mask=False, return_tensors="pt")
labels_without_eos = input_ids["input_ids"]
return torch.cat((torch.full((labels_without_eos.size(0), 1), self.eos_token_id), labels_without_eos), dim=1)
def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor:
spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs)
spm.Load(str(path))
return spm
def load_json(path: str) -> Union[Dict, List]:
with open(path, "r") as f:
return json.load(f)
def save_json(data, path: str) -> None:
with open(path, "w") as f:
json.dump(data, f, indent=2)
MitreTokenizer.register_for_auto_class("AutoTokenizer")