--- license: bsd-3-clause language: - zh - en - id - ja - es --- # TUBELEX FastText Word Embeddings FastText Word Embeddings trained on the TUBELEX YouTube subtitle corpora. We use the 300-dimensional [fastText](https://github.com/facebookresearch/fastText) CBOW model with position weights, 10 negative samples, 10 epochs, character 5-grams (other paramters: default) ([Grave et al., 2018](https://aclanthology.org/L18-1550)). We provide both '\*.bin' files (for fastText) and '\*.vec' files that follow the common Word2vec format, and can be used for instance with the `gensim` package. # What is TUBELEX? TUBELEX is a YouTube subtitle corpus currently available for Chinese, English, Indonesian, Japanese, and Spanish. - TODO: paper link - [KenLM n-gram models](https://huggingface.co/naist-nlp/tubelex-kenlm) - [word frequencies and code](https://github.com/naist-nlp/tubelex) # Usage To download and use the fastText models in Python, first install dependencies: ``` pip install huggingface_hub pip install fasttext ``` You can then use e.g. the English (`en`) model in the following way: ``` import fasttext from huggingface_hub import hf_hub_download model_file = hf_hub_download(repo_id='naist-nlp/tubelex-kenlm', filename='tubelex-en.bin') model = fasttext.load_model(model_file) print(model['koala']) ```