File size: 30,359 Bytes
5b72a55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
import math
import torch
from tqdm import tqdm
from dataclasses import dataclass
from contextlib import nullcontext
from typing import Mapping, Optional, Tuple
from accelerate import Accelerator
from collections import defaultdict
from transformers.modeling_outputs import BaseModelOutputWithPast


def optional_grad_ctx(with_grad=False):
    if with_grad:
        return nullcontext()
    else:
        return torch.no_grad()

def move_to_device(data, device):
    """
    Prepares one `data` before feeding it to the model, be it a tensor or a nested list/dictionary of tensors.
    """
    if isinstance(data, Mapping):
        return type(data)({k: move_to_device(v, device) for k, v in data.items()})
    elif isinstance(data, (tuple, list)):
        return type(data)(move_to_device(v, device) for v in data)
    elif isinstance(data, torch.Tensor):
        kwargs = {"device": device}
        return data.to(**kwargs)
    else:
        return data

def get_shifted_labels(input_ids):
    if isinstance(input_ids, torch.Tensor):
        labels = input_ids.clone()
        labels = torch.cat([labels[:, 1:], labels.new_zeros((input_ids.shape[0], 1)) - 100], dim=-1)
    elif isinstance(input_ids, list) and isinstance(input_ids[0], int):
        labels = input_ids.copy()
        labels = labels[1:] + [-100]
    elif isinstance(input_ids, list) and isinstance(input_ids[0], list):
        labels = input_ids.copy()
        for i, label in enumerate(labels):
            labels[i] = labels[i][1:] + [-100]
    else:
        raise NotImplementedError
    return labels

def compute_loss(logits, labels, shift=False):
    """
    Returns:
        token_loss: batch_size, seq_length
    """
    if shift:
        labels = get_shifted_labels(labels)

    labels = labels.to(logits.device)
    batch_size = logits.shape[0]

    # NOTE: the loss on -100 labels is 0 by default
    token_loss = torch.nn.functional.cross_entropy(
        logits.flatten(0, 1), 
        labels.reshape(-1), 
        reduction="none"
    ).reshape(batch_size, -1)   # batch_size, seq_len

    # print(token_loss)

    valid_token_num = (labels != -100).sum(-1)  # batch_size
    all_valid_token_num = valid_token_num.sum()
    
    if all_valid_token_num > 0:
        loss = token_loss.sum() / valid_token_num.sum()
    else:
        loss = token_loss.sum()

    batch_loss = token_loss.sum(-1) / valid_token_num
    # prevent nan
    if (valid_token_num == 0).any():
        batch_loss = batch_loss.masked_fill(valid_token_num == 0, 0.)

    return loss, batch_loss, token_loss


@torch.no_grad()
def evaluate_perplexity(model, dataloader, accelerator:Optional[Accelerator]=None):
    if accelerator is not None and type(dataloader) == torch.utils.data.DataLoader:
        # if the dataloader has been prepared, we shall not prepare it twice, especially in case of deepspeed
        dataloader = accelerator.prepare(dataloader)

    # if accelerator.process_index == 0:
    #     for name, x in model.named_parameters():
    #         print(f"{name: ^80} {x.dtype}")

    all_loss = defaultdict(list)
    for i, x in enumerate(tqdm(dataloader, desc="Computing Perplexity")):
        # NOTE: important to reset memory for every batch
        if hasattr(model, "memory"):
            model.memory.reset()

        # the seq id
        index = x.pop("index")
        # length is used to group training data, no use here
        length = x.pop("length", None)

        output = model(**x)

        valid_token_num = (x["labels"] != -100).sum(-1)

        # NOTE: we need the loss for each element in the batch for accurate computation, because the number of valid tokens may differ among elements
        if hasattr(output, "batch_loss"):
            # output from our model has batch_loss by default
            batch_loss = output.batch_loss
        else:
            # output from other models does not
            loss, batch_loss, token_loss = compute_loss(output.logits, x["labels"], shift=True)

        index = index.tolist()
        batch_loss = batch_loss.tolist()
        valid_token_num = valid_token_num.tolist()

        if accelerator is not None and accelerator.num_processes > 1:
            # num_device * batch_size
            index = accelerator.gather_for_metrics(index)
            batch_loss = accelerator.gather_for_metrics(batch_loss)
            valid_token_num = accelerator.gather_for_metrics(valid_token_num)

        for _id, _loss, _num in zip(index, batch_loss, valid_token_num):
            # loss times num is the total loss of all valid tokens
            all_loss[_id].append((_loss * _num, _num))

    all_loss = dict(all_loss)
    for _id, loss_and_num in all_loss.items():
        # sum up the loss for all valid tokens in the entire sequence, and divide the number of valid tokens
        all_loss[_id] = sum([x[0] for x in loss_and_num]) / sum(x[1] for x in loss_and_num)
    
    # average across then take exp
    perplexity = math.exp(sum(all_loss.values()) / len(all_loss))
    return perplexity


@torch.no_grad()
def evaluate_generation(model, dataloader, accelerator:Optional[Accelerator]=None, tokenizer=None, return_new_tokens_only=True, **generation_config):
    if accelerator is not None and type(dataloader) == torch.utils.data.DataLoader:
        # if the dataloader has been prepared, we shall not prepare it twice, especially in case of deepspeed
        dataloader = accelerator.prepare(dataloader)

    all_indices = []
    all_outputs = []

    index = 0
    
    for i, x in enumerate(tqdm(dataloader, desc="Computing Generation")):
        # if i > 3:
        #     break
        
        # NOTE: important to reset memory for every batch
        if hasattr(model, "memory"):
            model.memory.reset()

        # length is used to group training data, no use here
        length = x.pop("length", None)

        # if indices are None, we use batch size
        indices = x.pop("index", None)
        if indices is None:
            indices = list(range(index, index + x['input_ids'].shape[0]))
            index += x['input_ids'].shape[0]
        else:
            indices = indices.tolist()

        outputs = model.generate(**x, **generation_config)
        if return_new_tokens_only:
            start_idx = x["input_ids"].shape[1]
            outputs = outputs[:, start_idx:]

        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        if accelerator is not None and accelerator.num_processes > 1:
            outputs = accelerator.gather_for_metrics(outputs)
            indices = accelerator.gather_for_metrics(indices)

        outputs = outputs
        indices = indices
        all_indices.extend(indices)
        all_outputs.extend(outputs)

    return all_indices, all_outputs


@torch.no_grad()
def evaluate_nll(model, dataloader, accelerator:Optional[Accelerator]=None):
    if accelerator is not None and type(dataloader) == torch.utils.data.DataLoader:
        # if the dataloader has been prepared, we shall not prepare it twice, especially in case of deepspeed
        dataloader = accelerator.prepare(dataloader)

    # if accelerator.process_index == 0:
    #     for name, x in model.named_parameters():
    #         print(f"{name: ^80} {x.dtype}")

    all_loss = defaultdict(list)
    for i, x in enumerate(tqdm(dataloader, desc="Computing Perplexity")):
        # NOTE: important to reset memory for every batch
        if hasattr(model, "memory"):
            model.memory.reset()

        # the seq id
        index = x.pop("index")
        # length is used to group training data, no use here
        length = x.pop("length", None)

        output = model(**x)

        valid_token_num = (x["labels"] != -100).sum()

        # NOTE: we need the loss for each element in the batch for accurate computation, because the number of valid tokens may differ among elements
        if hasattr(output, "batch_loss"):
            # output from our model has batch_loss by default
            batch_loss = output.batch_loss
        else:
            # output from other models does not
            loss, batch_loss, token_loss = compute_loss(output.logits, x["labels"], shift=True)

        if accelerator is not None and accelerator.num_processes > 1:
            # num_device * batch_size
            index = accelerator.gather_for_metrics(index)
            batch_loss = accelerator.gather_for_metrics(batch_loss)
            valid_token_num = accelerator.gather_for_metrics(valid_token_num)

        for _id, _loss in zip(index.tolist(), batch_loss.tolist()):
            # loss times num is the total loss of all valid tokens
            all_loss[_id].append(_loss)

    return all_loss


@dataclass
class ModelOutput(BaseModelOutputWithPast):
    loss: Optional[torch.FloatTensor] = None
    batch_loss: Optional[torch.FloatTensor] = None
    token_loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None



########## Various RoPE Scaling Methods Below (wrap the encoding process within the module for convenience) ##########

def get_rope(head_dim, base, max_position_embeddings, rope_scaling=None):
    """
    Get rope module. {native, linear scaling, dynamic ntk scaling, yarn scaling, llama3 scaling}
    """
    if rope_scaling is None:
        rope = RotaryEmbedding(
            dim=head_dim,
            base=base,
            max_position_embeddings=max_position_embeddings,
        )
    else:
        scaling_type = rope_scaling["type"]
        scaling_factor = rope_scaling["factor"]
        if scaling_type == "linear":
            rope = LinearScalingRotaryEmbedding(
                dim=head_dim,
                base=base,
                max_position_embeddings=max_position_embeddings,
                scaling_factor=scaling_factor,
            )
        elif scaling_type == "dynamic":
            rope = DynamicNTKScalingRotaryEmbedding(
                dim=head_dim,
                base=base,
                max_position_embeddings=max_position_embeddings,
                scaling_factor=scaling_factor,
            )
        elif scaling_type == "yarn":
            rope = YarnRotaryEmbedding(
                dim=head_dim,
                base=base,
                max_position_embeddings=max_position_embeddings,
                scaling_factor=scaling_factor,
            )
        elif scaling_type == "yarn-t":
            rope = YarnDynamicTemperatureRotaryEmbedding(
                dim=head_dim,
                base=base,
                max_position_embeddings=max_position_embeddings,
                scaling_factor=scaling_factor,
            )
        elif scaling_type == "yarn-t-logn":
            rope = YarnDynamicTemperatureLogNRotaryEmbedding(
                dim=head_dim,
                base=base,
                max_position_embeddings=max_position_embeddings,
                scaling_factor=scaling_factor,
            )
        elif scaling_type == "llama3":
            rope = Llama3RotaryEmbedding(
                dim=head_dim,
                base=base,
                max_position_embeddings=max_position_embeddings,
                scaling_factor=scaling_factor,
                original_max_position_embeddings=rope_scaling.get("original_max_position_embeddings", 8192),
                low_freq_factor=rope_scaling.get("low_freq_factor", 1),
                high_freq_factor=rope_scaling.get("high_freq_factor", 4),
            )
        else:
            raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
    
    return rope


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


class RotaryEmbedding(torch.nn.Module):
    def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        # Build here to make `torch.jit.trace` work.
        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
        )

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
        freqs = torch.outer(t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos(), persistent=False)
        self.register_buffer("sin_cached", emb.sin(), persistent=False)

    def forward(self, q, k, position_ids):
        seq_len = max(position_ids.max().item() + 1, k.shape[2])

        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)

        # batch_size, 1, key_len, head_dim
        k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
        k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)

        q_cos = k_cos[..., -q.shape[2]:, :]
        q_sin = k_sin[..., -q.shape[2]:, :]

        q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
        k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
        return q_embed, k_embed


class LinearScalingRotaryEmbedding(RotaryEmbedding):
    """RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""

    def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None, scaling_factor=1.0):
        self.scaling_factor = scaling_factor
        super().__init__(dim, max_position_embeddings, base, device)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
        t = t / self.scaling_factor

        freqs = torch.outer(t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)


class DynamicNTKScalingRotaryEmbedding(RotaryEmbedding):
    """RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""

    def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None, scaling_factor=1.0):
        self.scaling_factor = scaling_factor
        super().__init__(dim, max_position_embeddings, base, device)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len

        if seq_len > self.max_position_embeddings:
            base = self.base * (
                (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
            ) ** (self.dim / (self.dim - 2))
            inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
            self.register_buffer("inv_freq", inv_freq, persistent=False)

        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)

        freqs = torch.outer(t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)


class YarnRotaryEmbedding(torch.nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128):
        super().__init__()

        self.base = base
        self.dim = dim
        self.scaling_factor = scaling_factor
        self.beta_slow = beta_slow
        self.beta_fast = beta_fast
        self.max_position_embeddings = max_position_embeddings

        self._set_cos_sin_cache(
            seq_len=math.ceil(max_position_embeddings * scaling_factor), device=device, dtype=torch.get_default_dtype()
        )

    def _get_factor(self):
        # the dimension whose index is smaller than fast_dim rotates more than beta_fast
        fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base))
        fast_dim = max(math.floor(fast_dim), 0)
        # the dimension whose index is bigger than slow_dim rotates less than beta_slow
        slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base))
        slow_dim = min(math.ceil(slow_dim), self.dim - 1)

        if fast_dim == slow_dim:
            slow_dim += 0.001

        # NOTE: very important to use full precision here so that the factor is correct
        dim_arange = torch.arange(0, self.dim // 2, dtype=torch.float32)
        dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim)
        dim_factor = torch.clamp(dim_factor, 0, 1)

        # align with the paper notation
        return (1 - dim_factor)

    def _get_temperature(self):
        if self.scaling_factor <= 1:
            return 1.0
        return 0.07 * math.log(self.scaling_factor) + 1.0
    
    def _set_cos_sin_cache(self, seq_len, device, dtype):
        dim_arange = torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim
        # dim / 2
        freq = self.base ** dim_arange
        theta = 1 / freq
        interleave_theta = theta / self.scaling_factor

        factor = self._get_factor().to(device)
        yarn_theta = factor * theta + (1 - factor) * interleave_theta
        self.register_buffer("inv_freq", yarn_theta, persistent=False)

        t = torch.arange(seq_len, device=device, dtype=torch.float32)
        freqs = torch.outer(t, self.inv_freq)
        emb = torch.cat((freqs, freqs), dim=-1)

        # get attention temperature
        temperature = self._get_temperature()

        self.register_buffer("cos_cached", emb.cos() * temperature, persistent=False)
        self.register_buffer("sin_cached", emb.sin() * temperature, persistent=False)
        self.max_seq_len_cached = seq_len
    
    def forward(self, q, k, position_ids):
        seq_len = max(position_ids.max().item() + 1, k.shape[2])

        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self.scaling_factor = seq_len / self.max_position_embeddings
            self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)

        k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
        k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)

        q_cos = k_cos[..., -q.shape[2]:, :]
        q_sin = k_sin[..., -q.shape[2]:, :]

        q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
        k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
        return q_embed, k_embed


class YarnDynamicTemperatureRotaryEmbedding(torch.nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128):
        super().__init__()

        self.base = base
        self.dim = dim
        self.scaling_factor = scaling_factor
        self.beta_slow = beta_slow
        self.beta_fast = beta_fast
        self.max_position_embeddings = max_position_embeddings

        self._set_cos_sin_cache(
            seq_len=math.ceil(max_position_embeddings * scaling_factor), device=device, dtype=torch.get_default_dtype()
        )

    def _get_factor(self):
        # the dimension whose index is smaller than fast_dim rotates more than beta_fast
        fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base))
        fast_dim = max(math.floor(fast_dim), 0)
        # the dimension whose index is bigger than slow_dim rotates less than beta_slow
        slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base))
        slow_dim = min(math.ceil(slow_dim), self.dim - 1)

        if fast_dim == slow_dim:
            slow_dim += 0.001

        # NOTE: very important to use full precision here so that the factor is correct
        dim_arange = torch.arange(0, self.dim // 2, dtype=torch.float32)
        dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim)
        dim_factor = torch.clamp(dim_factor, 0, 1)

        # align with the paper notation
        return (1 - dim_factor)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        dim_arange = torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim
        # dim / 2
        freq = self.base ** dim_arange
        theta = 1 / freq
        interleave_theta = theta / self.scaling_factor

        factor = self._get_factor().to(device)
        yarn_theta = factor * theta + (1 - factor) * interleave_theta
        self.register_buffer("inv_freq", yarn_theta, persistent=False)

        positions = torch.arange(seq_len, device=device, dtype=torch.float32)
        freqs = torch.outer(positions, self.inv_freq)
        emb = torch.cat((freqs, freqs), dim=-1)

        # NOTE: get attention temperature that will be applied on the query vector
        # temperature = torch.log(positions + 1) / math.log(self.max_position_embeddings)
        temperature = (0.07 * torch.log((positions + 1) / self.max_position_embeddings) + 1) ** 2
        temperature[:self.max_position_embeddings] = 1
        self.register_buffer("temperature", temperature.unsqueeze(1), persistent=False)

        self.register_buffer("cos_cached", emb.cos(), persistent=False)
        self.register_buffer("sin_cached", emb.sin(), persistent=False)
        self.max_seq_len_cached = seq_len
    
    def forward(self, q, k, position_ids):
        seq_len = max(position_ids.max().item() + 1, k.shape[2])

        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self.scaling_factor = seq_len / self.max_position_embeddings
            self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)

        # batch_size, 1, key_len, head_dim
        k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
        k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)

        q_cos = k_cos[..., -q.shape[2]:, :]
        q_sin = k_sin[..., -q.shape[2]:, :]

        q_position_ids = position_ids[:, -q.shape[2]:]
        temperature = self.temperature[q_position_ids].to(dtype=k.dtype).unsqueeze(1)
        q_cos = q_cos * temperature
        q_sin = q_sin * temperature

        q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
        k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
        return q_embed, k_embed


class YarnDynamicTemperatureLogNRotaryEmbedding(torch.nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128):
        super().__init__()

        self.base = base
        self.dim = dim
        self.scaling_factor = scaling_factor
        self.beta_slow = beta_slow
        self.beta_fast = beta_fast
        self.max_position_embeddings = max_position_embeddings

        self._set_cos_sin_cache(
            seq_len=math.ceil(max_position_embeddings * scaling_factor), device=device, dtype=torch.get_default_dtype()
        )

    def _get_factor(self):
        # the dimension whose index is smaller than fast_dim rotates more than beta_fast
        fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base))
        fast_dim = max(math.floor(fast_dim), 0)
        # the dimension whose index is bigger than slow_dim rotates less than beta_slow
        slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base))
        slow_dim = min(math.ceil(slow_dim), self.dim - 1)

        if fast_dim == slow_dim:
            slow_dim += 0.001

        # NOTE: very important to use full precision here so that the factor is correct
        dim_arange = torch.arange(0, self.dim // 2, dtype=torch.float32)
        dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim)
        dim_factor = torch.clamp(dim_factor, 0, 1)

        # align with the paper notation
        return (1 - dim_factor)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        dim_arange = torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim
        # dim / 2
        freq = self.base ** dim_arange
        theta = 1 / freq
        interleave_theta = theta / self.scaling_factor

        factor = self._get_factor().to(device)
        yarn_theta = factor * theta + (1 - factor) * interleave_theta
        self.register_buffer("inv_freq", yarn_theta, persistent=False)

        positions = torch.arange(seq_len, device=device, dtype=torch.float32)
        freqs = torch.outer(positions, self.inv_freq)
        emb = torch.cat((freqs, freqs), dim=-1)

        # NOTE: get attention temperature that will be applied on the query vector
        temperature = torch.log(positions + 1) / math.log(self.max_position_embeddings)
        # temperature = (0.07 * torch.log((positions + 1) / self.max_position_embeddings) + 1) ** 2
        temperature[:self.max_position_embeddings] = 1
        self.register_buffer("temperature", temperature.unsqueeze(1), persistent=False)

        self.register_buffer("cos_cached", emb.cos(), persistent=False)
        self.register_buffer("sin_cached", emb.sin(), persistent=False)
        self.max_seq_len_cached = seq_len
    
    def forward(self, q, k, position_ids):
        seq_len = max(position_ids.max().item() + 1, k.shape[2])

        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self.scaling_factor = seq_len / self.max_position_embeddings
            self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)

        # batch_size, 1, key_len, head_dim
        k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
        k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)

        q_cos = k_cos[..., -q.shape[2]:, :]
        q_sin = k_sin[..., -q.shape[2]:, :]

        q_position_ids = position_ids[:, -q.shape[2]:]
        temperature = self.temperature[q_position_ids].to(dtype=k.dtype).unsqueeze(1)
        q_cos = q_cos * temperature
        q_sin = q_sin * temperature

        q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
        k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
        return q_embed, k_embed


class Llama3RotaryEmbedding(torch.nn.Module):
    def __init__(self, dim, max_position_embeddings=8192, base=10000, device=None, scaling_factor=1.0, original_max_position_embeddings=8192, low_freq_factor=1, high_freq_factor=4):
        super().__init__()

        self.base = base
        self.dim = dim
        self.scaling_factor = scaling_factor
        self.original_max_position_embeddings = original_max_position_embeddings
        self.max_position_embeddings = max(max_position_embeddings, int(original_max_position_embeddings * scaling_factor))
        self.low_freq_factor = low_freq_factor
        self.high_freq_factor = high_freq_factor

        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
        low_freq_wavelen = self.original_max_position_embeddings / low_freq_factor
        high_freq_wavelen = self.original_max_position_embeddings / high_freq_factor
        new_freqs = []
        for freq in inv_freq:
            wavelen = 2 * math.pi / freq
            if wavelen < high_freq_wavelen:
                new_freqs.append(freq)
            elif wavelen > low_freq_wavelen:
                new_freqs.append(freq / scaling_factor)
            else:
                assert low_freq_wavelen != high_freq_wavelen
                smooth = (self.original_max_position_embeddings / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
                new_freqs.append((1 - smooth) * freq / scaling_factor + smooth * freq)
        inv_freq = torch.tensor(new_freqs, dtype=inv_freq.dtype, device=inv_freq.device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        self._set_cos_sin_cache(seq_len=self.max_position_embeddings, device=device)

    def _set_cos_sin_cache(self, seq_len, device):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
        freqs = torch.outer(t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos(), persistent=False)
        self.register_buffer("sin_cached", emb.sin(), persistent=False)
    
    def forward(self, q, k, position_ids):
        seq_len = max(position_ids.max().item() + 1, k.shape[2])

        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, device=k.device)

        k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
        k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)

        q_cos = k_cos[..., -q.shape[2]:, :]
        q_sin = k_sin[..., -q.shape[2]:, :]

        q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
        k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
        return q_embed, k_embed