{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dc3a54607c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700557991728579479, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAACr1L30frY+tWaMPT7Irb4vqf65CIH8uwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVAAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAl1p9JBgOMAWyUS+yMAXSUR0Cgjx1YISlFdX2UKGgGR0BzVFmwqy4XaAdL/WgIR0Cgj9UDU3GXdX2UKGgGR0Bv9uvdM0xeaAdL02gIR0CgkPIIv8IidX2UKGgGR0BzJokB0ZFYaAdL52gIR0CgkZRT0g8sdX2UKGgGR0BxpNqk/KQraAdL1WgIR0CgkiQK8cuKdX2UKGgGR0BxOuPdVNpNaAdL52gIR0CgksA4wRGudX2UKGgGR0BwOwkGA09AaAdL72gIR0Cgk2uzIFNddX2UKGgGR0BwvND/lyR0aAdL6WgIR0CglLmkep4sdX2UKGgGR0BwnMznA6+4aAdNEwFoCEdAoJWxw2l2vHV9lChoBkdAcg/ElE7W/mgHS/9oCEdAoJaUYGdI5HV9lChoBkdAcGIYDDCP62gHS+hoCEdAoJdWUD+zdHV9lChoBkdAchslZX+2mmgHTSQBaAhHQKCZEd3B55Z1fZQoaAZHQG2AzFERaoxoB0vpaAhHQKCZ4NhmXgN1fZQoaAZHQG7mhakhzNloB0vyaAhHQKCavXFtKqZ1fZQoaAZHQHDP5FPSDyxoB0v9aAhHQKCbvr1uivh1fZQoaAZHQHENQnYxtYVoB0v3aAhHQKCc7+ZPVNJ1fZQoaAZHQHFDaXjU/fRoB0v/aAhHQKCdnIkJKJ51fZQoaAZHQG1D9sabWmRoB0v7aAhHQKCeR5BTn7p1fZQoaAZHQHLrgMx46fdoB0vpaAhHQKCe4sGxD9h1fZQoaAZHQG4h/8VHnU5oB0vxaAhHQKCgGTQmeDp1fZQoaAZHQHDFayB06o5oB0vkaAhHQKCguMBp5/t1fZQoaAZHQHBcEnkT6BRoB0voaAhHQKChWFXaJyh1fZQoaAZHQHNiy5NGmUJoB00oAWgIR0CgoiV5B1LbdX2UKGgGR0A3h052hZhbaAdLtWgIR0CgoyhlcyFgdX2UKGgGR0BycFzxPO6eaAdNBwFoCEdAoKPi06YE4nV9lChoBkdAcV01O0svqWgHS/RoCEdAoKSNLSNOunV9lChoBkdAcJVcKgIyCWgHTQcBaAhHQKClSGW2PT51fZQoaAZHQHDFWT1TR6ZoB00HAWgIR0CgpoyApazNdX2UKGgGR0BwsyVkc0cfaAdNAAFoCEdAoKc/fAKv3nV9lChoBkdAbswwyqMm4WgHS9NoCEdAoKfdwPy08nV9lChoBkdAcQTaLGaQWGgHS+ZoCEdAoKiEDU3GXHV9lChoBkdAcOyc+qzZ6GgHTQgBaAhHQKCpPkvK2a51fZQoaAZHQHDXtt2s7uFoB03lAWgIR0CgqyG0VrRCdX2UKGgGR0BySemP5pJxaAdNEAFoCEdAoKveIyj59HV9lChoBkdAcZTO2y9mH2gHTQUBaAhHQKCsl9G7SRd1fZQoaAZHQHH0HxvvSc9oB0vgaAhHQKCtvbr1M/R1fZQoaAZHQHIl3OjZcs1oB00IAWgIR0CgrneNLlFMdX2UKGgGR0Bw7tMFlkH2aAdL/2gIR0Cgrytuk1uSdX2UKGgGR0Byw597WuoxaAdL+mgIR0Cgr+TF+/g0dX2UKGgGR0BwFIxDb8FZaAdL/2gIR0CgsYl2/zredX2UKGgGR0BwfPziCJ40aAdL6GgIR0CgslXnZCfIdX2UKGgGR0ByBT6DXe3yaAdL52gIR0Cgsx1I7NjcdX2UKGgGR0BwTRBdD6WPaAdNAAFoCEdAoLP/GACnxnV9lChoBkdAcGUBqKxcFGgHS/ZoCEdAoLWUzj3mFXV9lChoBkdAcomOQQtjC2gHTTkBaAhHQKC2wt1ZDAt1fZQoaAZHQHCqrTQVsUJoB00DAWgIR0Cgt5+ZXuE3dX2UKGgGR0Bvwo5FPSDzaAdL8mgIR0CguEp35eqrdX2UKGgGR0BxECfK6nR+aAdL42gIR0CguXfRE4NrdX2UKGgGR0BmOHJzT4L1aAdN6ANoCEdAoLzKCWeHz3V9lChoBkdATiqr5qM3qGgHS8VoCEdAoL1YZ/CqInV9lChoBkdAbeoOvt+kQGgHTVABaAhHQKC+QeQuEmJ1fZQoaAZHQHJAhZQpF1BoB0vXaAhHQKC+4ACnxax1fZQoaAZHQHJl6+BYmsxoB0vvaAhHQKDAEWVNYbN1fZQoaAZHQHLho1cdHUdoB0vxaAhHQKDAyQT238Z1fZQoaAZHQHF8IdZJTVFoB0v5aAhHQKDBeEW69TR1fZQoaAZHQHFYY0ygwoNoB00KAWgIR0CgwjMcQyyldX2UKGgGR0Bvvp4QjD8+aAdNMQFoCEdAoMOhPVNHpnV9lChoBkdAbtyYLLIPsmgHS/hoCEdAoMRKLjxTbXV9lChoBkdAcZpdBjWkJ2gHTQQBaAhHQKDFAEmplz51fZQoaAZHQHDa8FUyYXxoB00KAWgIR0CgxbkFW4mUdX2UKGgGR0BJc4dp7CzkaAdLrmgIR0CgxsLvCuU2dX2UKGgGR0ByESNKh+OPaAdL+mgIR0Cgx3GPHT7VdX2UKGgGR0BwttqtYB/7aAdL62gIR0CgyBRgqmTDdX2UKGgGR0Bw1SqEOAiFaAdL/WgIR0CgyMYuK4x2dX2UKGgGR0BuxC2Yv38GaAdL6mgIR0CgyWpeeFtbdX2UKGgGR0Bw+r5hz/6waAdL9GgIR0Cgyp+Y2Kl6dX2UKGgGR0BvSuzposZpaAdL02gIR0CgyzO0CzTndX2UKGgGR0BSQjWCmMwUaAdLomgIR0Cgy8sxO+IudX2UKGgGR0BxRXbfxc3VaAdL12gIR0CgzIvphWo4dX2UKGgGR0Bws8TAWSEEaAdLzWgIR0CgzUpoCdSVdX2UKGgGR0BIdEIHC4z8aAdLuGgIR0CgzqIl2NeddX2UKGgGR0BxSb+6y0KJaAdL5WgIR0Cgz3Z2pyZKdX2UKGgGR0Bx2WG7BfrsaAdNCQFoCEdAoNBZpnHvMXV9lChoBkdAS+bR2KVIJGgHS55oCEdAoNDy8cuJ13V9lChoBkdAchOAJ9iMHmgHS/poCEdAoNKnPLPldXV9lChoBkdAcBWOAy2x6mgHS+RoCEdAoNNIGQjlgnV9lChoBkdActHCF9KEnWgHS/hoCEdAoNPz212JSHV9lChoBkdAcv9qzqrzXmgHS/poCEdAoNSfiNsFdXV9lChoBkdAczC6zmfXgGgHTQgBaAhHQKDV3wVj7Q91fZQoaAZHQHIKx2nsLORoB0vvaAhHQKDWf25hBqt1fZQoaAZHQHGJnZsbedloB0vaaAhHQKDXF/hESdx1fZQoaAZHQHDuqD5CWu5oB0v+aAhHQKDXyDOkcjt1fZQoaAZHQHKu5g1FYuFoB00GAWgIR0Cg2HYYaYNRdX2UKGgGR0Bw3Mppeu3daAdNKgFoCEdAoNnUidJ8OXV9lChoBkdAT3jPY4ACGWgHS6poCEdAoNpJZZB9kXV9lChoBkdAcI79DhLoOmgHTQ4BaAhHQKDbAfTTfBN1fZQoaAZHQHDeJMxoIv9oB00FAWgIR0Cg27tkvsZ6dX2UKGgGR0Bx/2SPluFYaAdLwGgIR0Cg3Mz+WGATdX2UKGgGR0Bx2WjASFoMaAdL62gIR0Cg3W/4yoGZdX2UKGgGR0By7AhStNi6aAdL+2gIR0Cg3hvPkaMrdX2UKGgGR0Bxf/yUcGTtaAdL+2gIR0Cg3ssiKR+0dX2UKGgGR0BlBxTVDrquaAdN6ANoCEdAoOIc0tRNy3V9lChoBkdAcuMpJPIn0GgHS/loCEdAoONUelsP8XV9lChoBkdAcrDaLn9vTGgHTTQBaAhHQKDkMLgn+hp1fZQoaAZHQHIeTSXt0FNoB00cAWgIR0Cg5PKISDh+dX2UKGgGR0ByF6DoQnQZaAdNAAFoCEdAoOWqD28IzHV9lChoBkdAcia6ySmqHWgHTS8BaAhHQKDnPHc1wYN1fZQoaAZHQHF29KRMewNoB0v0aAhHQKDoFnscABF1fZQoaAZHQHIYN/8VHnVoB0vjaAhHQKDo4EPDpC91fZQoaAZHQHA9wLeANG5oB0vyaAhHQKDpvg2Ifr91ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4692, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}