Seymasa commited on
Commit
1d1a5c1
1 Parent(s): 8b1c79e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -1
README.md CHANGED
@@ -5,4 +5,58 @@ datasets:
5
  language:
6
  - tr
7
  pipeline_tag: text-classification
8
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  language:
6
  - tr
7
  pipeline_tag: text-classification
8
+ ---
9
+
10
+ ## About the model
11
+ It is a Turkish bert-based model created to determine the types of bullying that people use against each other in social media.
12
+ Included classes;
13
+
14
+ - Nötr
15
+ - Kızdırma/Hakaret
16
+ - Cinsiyetçilik
17
+ - Irkçılık
18
+
19
+ 3388 tweets were used in the training of the model. Accordingly, the success rates in education are as follows;
20
+
21
+ | | INSULT | OTHER | PROFANITY | RACIST | SEXIST |
22
+ | ------ | ------ | ------ | ------ | ------ | ------ |
23
+ | Precision | 0.901 | 0.924 | 0.978 | 1.000 | 0.980 |
24
+ | Recall | 0.920 | 0.980 | 0.900 | 0.980 | 1.000 |
25
+ | F1 Score | 0.910 | 0.9514 | 0.937 | 0.989 | 0.990 |
26
+
27
+ F-Score: 0.9559690799177005
28
+ Recall: 0.9559999999999998
29
+ Precision: 0.9570284225256961
30
+ Accuracy: 0.956
31
+
32
+ ## Dependency
33
+ pip install torch torchvision torchaudio
34
+ pip install tf-keras
35
+ pip install transformers
36
+ pip install tensorflow
37
+
38
+ ## Example
39
+ ```sh
40
+ from transformers import AutoTokenizer, TextClassificationPipeline, TFBertForSequenceClassification
41
+
42
+ tokenizer = AutoTokenizer.from_pretrained("nanelimon/bert-base-turkish-offensive")
43
+ model = TFBertForSequenceClassification.from_pretrained("nanelimon/bert-base-turkish-offensive", from_pt=True)
44
+ pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True, top_k=2)
45
+
46
+ print(pipe('Bu bir denemedir hadi sende dene!'))
47
+ ```
48
+ Result;
49
+ ```sh
50
+ [[{'label': 'OTHER', 'score': 1.000}, {'label': 'INSULT', 'score': 0.000}]]
51
+ ```
52
+ - label= It shows which class the sent Turkish text belongs to according to the model.
53
+ - score= It shows the compliance rate of the Turkish text sent to the label found.
54
+
55
+ ## Authors
56
+ - Seyma SARIGIL: [email protected]
57
+
58
+ ## License
59
+
60
+ gpl-3.0
61
+
62
+ **Free Software, Hell Yeah!**