--- license: mit datasets: - nanelimon/insult-dataset language: - tr pipeline_tag: text-classification --- ## About the model It is a Turkish bert-based model created to determine the types of bullying that people use against each other in social media. Included classes; - Nötr - Kızdırma/Hakaret - Cinsiyetçilik - Irkçılık 3388 tweets were used in the training of the model. Accordingly, the success rates in education are as follows; | | INSULT | OTHER | PROFANITY | RACIST | SEXIST | | ------ | ------ | ------ | ------ | ------ | ------ | | Precision | 0.901 | 0.924 | 0.978 | 1.000 | 0.980 | | Recall | 0.920 | 0.980 | 0.900 | 0.980 | 1.000 | | F1 Score | 0.910 | 0.9514 | 0.937 | 0.989 | 0.990 | F-Score: 0.9559690799177005 Recall: 0.9559999999999998 Precision: 0.9570284225256961 Accuracy: 0.956 ## Dependency pip install torch torchvision torchaudio pip install tf-keras pip install transformers pip install tensorflow ## Example ```sh from transformers import AutoTokenizer, TextClassificationPipeline, TFBertForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("nanelimon/bert-base-turkish-offensive") model = TFBertForSequenceClassification.from_pretrained("nanelimon/bert-base-turkish-offensive", from_pt=True) pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True, top_k=2) print(pipe('Bu bir denemedir hadi sende dene!')) ``` Result; ```sh [[{'label': 'OTHER', 'score': 1.000}, {'label': 'INSULT', 'score': 0.000}]] ``` - label= It shows which class the sent Turkish text belongs to according to the model. - score= It shows the compliance rate of the Turkish text sent to the label found. ## Authors - Seyma SARIGIL: seymasargil@gmail.com ## License gpl-3.0 **Free Software, Hell Yeah!**