napolitan commited on
Commit
15343c1
·
verified ·
1 Parent(s): a0bb0b2

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +180 -51
README.md CHANGED
@@ -1,73 +1,202 @@
1
- # LS-LLaMA: Label Supervised LLaMA Finetuning
 
 
 
2
 
3
- <h2>📢: For convenience, we build a bi-directional LLMs toolkit <a href='https://github.com/WhereIsAI/BiLLM'>BiLLM</a> for language understanding. Welcome to use it.</h2>
4
 
5
- <p align="center">
6
 
7
- [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/label-supervised-llama-finetuning/named-entity-recognition-on-conll03-4)](https://paperswithcode.com/sota/named-entity-recognition-on-conll03-4?p=label-supervised-llama-finetuning)
8
 
9
- [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/label-supervised-llama-finetuning/named-entity-recognition-on-ontonotes-5-0-1)](https://paperswithcode.com/sota/named-entity-recognition-on-ontonotes-5-0-1?p=label-supervised-llama-finetuning)
10
- </p>
11
 
 
12
 
13
- <p align='center'>
14
- <img src='./docs/lsllama.png'/>
15
- </p>
16
 
17
- ## Usage
18
 
19
- Our implementation currently supports the following sequence classification benchmarks:
20
- 1. SST2 (2 classes) / SST5 (5 classes)
21
- 2. AGNews (4 classes)
22
- 3. Twitter Financial News Sentiment (twitterfin, 3 classes)
23
 
24
- and token classification benchmarks for named entity recognition (NER): CoNLL2003 and OntonotesV5.
25
 
26
- Commands for training LS-LLaMA and LS-unLLaMA on different tasks can follow the templates below:
27
- ```console
28
- foo@bar:~$ CUDA_VISIBLE_DEVICES=0 python file_name.py dataset_name model_size
29
- ```
 
 
 
30
 
31
- `file_name.py` can be one of `unllama_seq_clf.py`, `unllama_token_clf.py`, `llama_seq_clf.py`, and `llama_token_clf.py`, for training LS-LLaMA and LS-unLLaMA on sequence- and token-level classification.
32
 
33
- `dataset_name` can be one of `sst2`, `sst5`, `agnews`, `twitterfin`, `conll03`, and `ontonotesv5`.
34
 
35
- `model_size` can be `7b` or `13b`, corresponding to LLaMA-2-7B and LLaMA-2-13B.
 
 
36
 
37
- For example, the following command will train LS-unLLaMA based on LLaMA-2-7B on AGNews for sequence classification:
38
- ```console
39
- foo@bar:~$ CUDA_VISIBLE_DEVICES=0 python unllama_seq_clf.py agnews 7b
40
- ```
41
 
42
- ## Implementations
43
 
44
- Load Pretrained Models
45
 
46
- ```python
47
- from transformers import AutoTokenizer
48
- from modeling_llama import (
49
- LlamaForSequenceClassification, LlamaForTokenClassification,
50
- UnmaskingLlamaForSequenceClassification, UnmaskingLlamaForTokenClassification,
51
- )
52
 
 
53
 
54
- model_id = 'meta-llama/Llama-2-7b'
55
- tokenizer = AutoTokenizer.from_pretrained(model_id)
56
- model = LlamaForSequenceClassification.from_pretrained(model_id).bfloat16()
57
- model = LlamaForTokenClassification.from_pretrained(model_id).bfloat16()
58
- model = UnmaskingLlamaForSequenceClassification.from_pretrained(model_id).bfloat16()
59
- model = UnmaskingLlamaForTokenClassification.from_pretrained(model_id).bfloat16()
60
- ```
61
 
62
- For more usage, please refer to `unllama_seq_clf.py`, `unllama_token_clf.py`, `llama_seq_clf.py`, `llama_token_clf.py`.
63
 
64
- # Citation
65
 
66
- ```
67
- @article{li2023label,
68
- title={Label supervised llama finetuning},
69
- author={Li, Zongxi and Li, Xianming and Liu, Yuzhang and Xie, Haoran and Li, Jing and Wang, Fu-lee and Li, Qing and Zhong, Xiaoqin},
70
- journal={arXiv preprint arXiv:2310.01208},
71
- year={2023}
72
- }
73
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: NousResearch/Llama-2-7b-hf
3
+ library_name: peft
4
+ ---
5
 
6
+ # Model Card for Model ID
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
11
 
12
+ ## Model Details
13
 
14
+ ### Model Description
 
 
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
17
 
 
 
 
 
18
 
 
19
 
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
+ ### Model Sources [optional]
29
 
30
+ <!-- Provide the basic links for the model. -->
31
 
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
 
36
+ ## Uses
 
 
 
37
 
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
+ ### Direct Use
41
 
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
 
 
43
 
44
+ [More Information Needed]
45
 
46
+ ### Downstream Use [optional]
 
 
 
 
 
 
47
 
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
+ [More Information Needed]
51
 
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0