File size: 9,239 Bytes
5e5cff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7080
- Answer: {'precision': 0.7122381477398015, 'recall': 0.7985166872682324, 'f1': 0.752913752913753, 'number': 809}
- Header: {'precision': 0.3359375, 'recall': 0.36134453781512604, 'f1': 0.3481781376518218, 'number': 119}
- Question: {'precision': 0.7817531305903399, 'recall': 0.8206572769953052, 'f1': 0.8007329363261567, 'number': 1065}
- Overall Precision: 0.7260
- Overall Recall: 0.7842
- Overall F1: 0.7540
- Overall Accuracy: 0.8073

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                    | Header                                                                                                        | Question                                                                                                   | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.4164        | 1.0   | 10   | 1.1867          | {'precision': 0.21566110397946084, 'recall': 0.207663782447466, 'f1': 0.21158690176322417, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                   | {'precision': 0.48124557678697805, 'recall': 0.6384976525821596, 'f1': 0.5488297013720743, 'number': 1065} | 0.3869            | 0.4255         | 0.4053     | 0.6139           |
| 1.0235        | 2.0   | 20   | 0.8815          | {'precision': 0.578494623655914, 'recall': 0.6650185414091471, 'f1': 0.6187464059804485, 'number': 809}   | {'precision': 0.05555555555555555, 'recall': 0.008403361344537815, 'f1': 0.014598540145985401, 'number': 119} | {'precision': 0.6398687448728466, 'recall': 0.7323943661971831, 'f1': 0.6830122591943958, 'number': 1065}  | 0.6087            | 0.6618         | 0.6341     | 0.7403           |
| 0.7822        | 3.0   | 30   | 0.7564          | {'precision': 0.6335403726708074, 'recall': 0.7564894932014833, 'f1': 0.6895774647887324, 'number': 809}  | {'precision': 0.13559322033898305, 'recall': 0.06722689075630252, 'f1': 0.0898876404494382, 'number': 119}    | {'precision': 0.6905158069883528, 'recall': 0.7793427230046949, 'f1': 0.7322452580502868, 'number': 1065}  | 0.6511            | 0.7275         | 0.6872     | 0.7697           |
| 0.6495        | 4.0   | 40   | 0.6955          | {'precision': 0.6533333333333333, 'recall': 0.7873918417799752, 'f1': 0.7141255605381165, 'number': 809}  | {'precision': 0.19480519480519481, 'recall': 0.12605042016806722, 'f1': 0.15306122448979592, 'number': 119}   | {'precision': 0.7162276975361087, 'recall': 0.7915492957746478, 'f1': 0.752007136485281, 'number': 1065}   | 0.6707            | 0.7501         | 0.7082     | 0.7915           |
| 0.5641        | 5.0   | 50   | 0.6796          | {'precision': 0.6843267108167771, 'recall': 0.7663782447466008, 'f1': 0.7230320699708457, 'number': 809}  | {'precision': 0.275, 'recall': 0.18487394957983194, 'f1': 0.22110552763819097, 'number': 119}                 | {'precision': 0.7565217391304347, 'recall': 0.8169014084507042, 'f1': 0.7855530474040633, 'number': 1065}  | 0.7079            | 0.7587         | 0.7324     | 0.7899           |
| 0.4862        | 6.0   | 60   | 0.6563          | {'precision': 0.6844978165938864, 'recall': 0.7750309023485785, 'f1': 0.7269565217391305, 'number': 809}  | {'precision': 0.28, 'recall': 0.23529411764705882, 'f1': 0.2557077625570776, 'number': 119}                   | {'precision': 0.7420168067226891, 'recall': 0.8291079812206573, 'f1': 0.7831485587583149, 'number': 1065}  | 0.6972            | 0.7717         | 0.7326     | 0.8007           |
| 0.4389        | 7.0   | 70   | 0.6444          | {'precision': 0.6868365180467091, 'recall': 0.799752781211372, 'f1': 0.7390062821245003, 'number': 809}   | {'precision': 0.28703703703703703, 'recall': 0.2605042016806723, 'f1': 0.27312775330396477, 'number': 119}    | {'precision': 0.7411167512690355, 'recall': 0.8225352112676056, 'f1': 0.7797062750333779, 'number': 1065}  | 0.6962            | 0.7797         | 0.7356     | 0.8040           |
| 0.3912        | 8.0   | 80   | 0.6505          | {'precision': 0.7074527252502781, 'recall': 0.7861557478368356, 'f1': 0.7447306791569087, 'number': 809}  | {'precision': 0.3392857142857143, 'recall': 0.31932773109243695, 'f1': 0.32900432900432897, 'number': 119}    | {'precision': 0.7689594356261023, 'recall': 0.8187793427230047, 'f1': 0.793087767166894, 'number': 1065}   | 0.7207            | 0.7757         | 0.7472     | 0.8073           |
| 0.3511        | 9.0   | 90   | 0.6696          | {'precision': 0.7147577092511013, 'recall': 0.8022249690976514, 'f1': 0.7559697146185206, 'number': 809}  | {'precision': 0.296, 'recall': 0.31092436974789917, 'f1': 0.30327868852459017, 'number': 119}                 | {'precision': 0.7589833479404031, 'recall': 0.8131455399061033, 'f1': 0.7851314596554851, 'number': 1065}  | 0.7139            | 0.7787         | 0.7449     | 0.8042           |
| 0.3166        | 10.0  | 100  | 0.6746          | {'precision': 0.7190265486725663, 'recall': 0.8034610630407911, 'f1': 0.7589025102159953, 'number': 809}  | {'precision': 0.35398230088495575, 'recall': 0.33613445378151263, 'f1': 0.3448275862068966, 'number': 119}    | {'precision': 0.7753108348134992, 'recall': 0.819718309859155, 'f1': 0.7968963943404839, 'number': 1065}   | 0.7294            | 0.7842         | 0.7558     | 0.8081           |
| 0.2925        | 11.0  | 110  | 0.6839          | {'precision': 0.7160356347438753, 'recall': 0.7948084054388134, 'f1': 0.753368482718219, 'number': 809}   | {'precision': 0.3208955223880597, 'recall': 0.36134453781512604, 'f1': 0.33992094861660077, 'number': 119}    | {'precision': 0.7803780378037803, 'recall': 0.8140845070422535, 'f1': 0.796875, 'number': 1065}            | 0.7247            | 0.7792         | 0.7510     | 0.8087           |
| 0.2837        | 12.0  | 120  | 0.6853          | {'precision': 0.7161862527716186, 'recall': 0.7985166872682324, 'f1': 0.7551139684395091, 'number': 809}  | {'precision': 0.3333333333333333, 'recall': 0.3445378151260504, 'f1': 0.33884297520661155, 'number': 119}     | {'precision': 0.7751322751322751, 'recall': 0.8253521126760563, 'f1': 0.7994542974079127, 'number': 1065}  | 0.7253            | 0.7858         | 0.7543     | 0.8064           |
| 0.265         | 13.0  | 130  | 0.7016          | {'precision': 0.7069154774972558, 'recall': 0.796044499381953, 'f1': 0.7488372093023256, 'number': 809}   | {'precision': 0.31654676258992803, 'recall': 0.3697478991596639, 'f1': 0.3410852713178294, 'number': 119}     | {'precision': 0.7867513611615246, 'recall': 0.8140845070422535, 'f1': 0.8001845869866173, 'number': 1065}  | 0.7226            | 0.7802         | 0.7503     | 0.8076           |
| 0.2475        | 14.0  | 140  | 0.7055          | {'precision': 0.7084708470847084, 'recall': 0.796044499381953, 'f1': 0.749708963911525, 'number': 809}    | {'precision': 0.32575757575757575, 'recall': 0.36134453781512604, 'f1': 0.3426294820717131, 'number': 119}    | {'precision': 0.771806167400881, 'recall': 0.8225352112676056, 'f1': 0.7963636363636363, 'number': 1065}   | 0.7183            | 0.7842         | 0.7498     | 0.8054           |
| 0.2423        | 15.0  | 150  | 0.7080          | {'precision': 0.7122381477398015, 'recall': 0.7985166872682324, 'f1': 0.752913752913753, 'number': 809}   | {'precision': 0.3359375, 'recall': 0.36134453781512604, 'f1': 0.3481781376518218, 'number': 119}              | {'precision': 0.7817531305903399, 'recall': 0.8206572769953052, 'f1': 0.8007329363261567, 'number': 1065}  | 0.7260            | 0.7842         | 0.7540     | 0.8073           |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1