updated readme
Browse files
README.md
CHANGED
@@ -21,19 +21,64 @@ It achieves the following results on the evaluation set:
|
|
21 |
- Loss: 0.0008
|
22 |
- Accuracy: 1.0
|
23 |
|
24 |
-
##
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
|
36 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
### Training hyperparameters
|
39 |
|
|
|
21 |
- Loss: 0.0008
|
22 |
- Accuracy: 1.0
|
23 |
|
24 |
+
## Dataset Infomation
|
25 |
|
26 |
+
This model was fine-tuned to classify some company documents.
|
27 |
|
28 |
+
Dataset used: [Company Documents Dataset](https://www.kaggle.com/datasets/navodpeiris/company-documents-dataset)
|
29 |
|
30 |
+
## Dependencies
|
31 |
|
32 |
+
```
|
33 |
+
pip install PyMuPDF
|
34 |
+
pip install transformers
|
35 |
+
pip install torch
|
36 |
+
pip install torchvision
|
37 |
+
pip install pytesseract
|
38 |
+
```
|
39 |
|
40 |
+
- setup tesseract locally in your machine follow steps here: [install instructions](https://tesseract-ocr.github.io/tessdoc/Installation.html)
|
41 |
|
42 |
+
## Model Usage
|
43 |
+
|
44 |
+
use a file in this dataset to test: https://www.kaggle.com/datasets/navodpeiris/company-documents-dataset
|
45 |
+
|
46 |
+
```
|
47 |
+
import os
|
48 |
+
from PIL import Image
|
49 |
+
from transformers import LayoutLMv2Processor, LayoutLMv2ForSequenceClassification
|
50 |
+
import fitz
|
51 |
+
import io
|
52 |
+
|
53 |
+
processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
54 |
+
model = LayoutLMv2ForSequenceClassification.from_pretrained("navodPeiris/layoutlmv2-document-classifier")
|
55 |
+
|
56 |
+
DATA_FOLDER = "data"
|
57 |
+
filename = "invoice.pdf"
|
58 |
+
|
59 |
+
file_location = os.path.join(DATA_FOLDER, filename)
|
60 |
+
doc = fitz.open(file_location)
|
61 |
+
|
62 |
+
page = doc.load_page(0)
|
63 |
+
pix = page.get_pixmap(dpi=200)
|
64 |
+
|
65 |
+
# Convert Pixmap to bytes
|
66 |
+
img_bytes = pix.tobytes("png")
|
67 |
+
|
68 |
+
# Load into PIL.Image
|
69 |
+
image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
|
70 |
+
doc.close()
|
71 |
+
|
72 |
+
encoding = processor(image, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
|
73 |
+
|
74 |
+
outputs = model(**encoding)
|
75 |
+
logits = outputs.logits
|
76 |
+
|
77 |
+
predicted_class_id = logits.argmax(dim=1).item()
|
78 |
+
classified_output = model.config.id2label[predicted_class_id]
|
79 |
+
|
80 |
+
print(f"Predicted class: {classified_output}")
|
81 |
+
```
|
82 |
|
83 |
### Training hyperparameters
|
84 |
|