Model save
Browse files- README.md +124 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/swinv2-tiny-patch4-window8-256
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: swinv2-tiny-patch4-window8-256-finetuned-PE
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8720186154741129
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# swinv2-tiny-patch4-window8-256-finetuned-PE
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.3083
|
36 |
+
- Accuracy: 0.8720
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.00025
|
56 |
+
- train_batch_size: 256
|
57 |
+
- eval_batch_size: 256
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 1024
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 50
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| No log | 0.92 | 9 | 0.6391 | 0.6690 |
|
71 |
+
| 0.6873 | 1.95 | 19 | 0.5293 | 0.7376 |
|
72 |
+
| 0.6233 | 2.97 | 29 | 0.6385 | 0.6853 |
|
73 |
+
| 0.5976 | 4.0 | 39 | 0.4447 | 0.7970 |
|
74 |
+
| 0.5552 | 4.92 | 48 | 0.4029 | 0.8266 |
|
75 |
+
| 0.552 | 5.95 | 58 | 0.3675 | 0.8429 |
|
76 |
+
| 0.5055 | 6.97 | 68 | 0.3409 | 0.8581 |
|
77 |
+
| 0.4816 | 8.0 | 78 | 0.3322 | 0.8615 |
|
78 |
+
| 0.455 | 8.92 | 87 | 0.3166 | 0.8639 |
|
79 |
+
| 0.4428 | 9.95 | 97 | 0.3100 | 0.8662 |
|
80 |
+
| 0.4398 | 10.97 | 107 | 0.3713 | 0.8365 |
|
81 |
+
| 0.4318 | 12.0 | 117 | 0.4019 | 0.8284 |
|
82 |
+
| 0.4431 | 12.92 | 126 | 0.3074 | 0.8714 |
|
83 |
+
| 0.4437 | 13.95 | 136 | 0.3156 | 0.8656 |
|
84 |
+
| 0.4482 | 14.97 | 146 | 0.3516 | 0.8476 |
|
85 |
+
| 0.4353 | 16.0 | 156 | 0.3162 | 0.8598 |
|
86 |
+
| 0.4218 | 16.92 | 165 | 0.3018 | 0.8685 |
|
87 |
+
| 0.4111 | 17.95 | 175 | 0.3143 | 0.8650 |
|
88 |
+
| 0.4224 | 18.97 | 185 | 0.3146 | 0.8592 |
|
89 |
+
| 0.4114 | 20.0 | 195 | 0.3097 | 0.8691 |
|
90 |
+
| 0.4103 | 20.92 | 204 | 0.3038 | 0.8703 |
|
91 |
+
| 0.3989 | 21.95 | 214 | 0.2893 | 0.8796 |
|
92 |
+
| 0.3908 | 22.97 | 224 | 0.2956 | 0.8755 |
|
93 |
+
| 0.3923 | 24.0 | 234 | 0.3041 | 0.8685 |
|
94 |
+
| 0.3842 | 24.92 | 243 | 0.2876 | 0.8749 |
|
95 |
+
| 0.3808 | 25.95 | 253 | 0.2907 | 0.8767 |
|
96 |
+
| 0.382 | 26.97 | 263 | 0.3018 | 0.8738 |
|
97 |
+
| 0.3816 | 28.0 | 273 | 0.2812 | 0.8825 |
|
98 |
+
| 0.379 | 28.92 | 282 | 0.2960 | 0.8633 |
|
99 |
+
| 0.3858 | 29.95 | 292 | 0.2960 | 0.8743 |
|
100 |
+
| 0.3546 | 30.97 | 302 | 0.2850 | 0.8807 |
|
101 |
+
| 0.3656 | 32.0 | 312 | 0.2905 | 0.8784 |
|
102 |
+
| 0.3707 | 32.92 | 321 | 0.2926 | 0.8743 |
|
103 |
+
| 0.3651 | 33.95 | 331 | 0.2941 | 0.8796 |
|
104 |
+
| 0.3584 | 34.97 | 341 | 0.3133 | 0.8615 |
|
105 |
+
| 0.36 | 36.0 | 351 | 0.3181 | 0.8679 |
|
106 |
+
| 0.3496 | 36.92 | 360 | 0.3036 | 0.8685 |
|
107 |
+
| 0.3458 | 37.95 | 370 | 0.2939 | 0.8732 |
|
108 |
+
| 0.3431 | 38.97 | 380 | 0.3062 | 0.8703 |
|
109 |
+
| 0.3512 | 40.0 | 390 | 0.2914 | 0.8755 |
|
110 |
+
| 0.3512 | 40.92 | 399 | 0.3164 | 0.8674 |
|
111 |
+
| 0.3403 | 41.95 | 409 | 0.3063 | 0.8679 |
|
112 |
+
| 0.3423 | 42.97 | 419 | 0.3018 | 0.8720 |
|
113 |
+
| 0.3312 | 44.0 | 429 | 0.3094 | 0.8697 |
|
114 |
+
| 0.3365 | 44.92 | 438 | 0.3062 | 0.8755 |
|
115 |
+
| 0.3319 | 45.95 | 448 | 0.3081 | 0.8720 |
|
116 |
+
| 0.3409 | 46.15 | 450 | 0.3083 | 0.8720 |
|
117 |
+
|
118 |
+
|
119 |
+
### Framework versions
|
120 |
+
|
121 |
+
- Transformers 4.33.3
|
122 |
+
- Pytorch 2.0.1+cu117
|
123 |
+
- Datasets 2.14.5
|
124 |
+
- Tokenizers 0.13.3
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 110405153
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1501418007a7ec0718618759576d9aa0d2d855bc1594b762bfefea7a8f4a8731
|
3 |
size 110405153
|