File size: 4,036 Bytes
e6333f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# pip install accelerate datasets transformers huggingface_hub wandb gated_state_spaces_pytorch
import os

import torch
import torch.nn as nn
from torch.optim import AdamW
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts

import wandb
from tqdm import tqdm
from transformers import BloomForCausalLM, BloomTokenizerFast
from gated_state_spaces_pytorch import GatedStateSpacesLM
from gated_state_spaces_pytorch.autoregressive_wrapper import AutoregressiveWrapper

# from c4x import C4X
from pile_hf import ThePile, ThePileTokenized
from accelerate import Accelerator


def main():
    accelerator = Accelerator(
        log_with="wandb",
        gradient_accumulation_steps=8192,
    )
    accelerator.init_trackers("gated-state-space")

    emb_fn = "emb.pt"
    model_name = "bigscience/bloomz-1b7"
    if not os.path.isfile(emb_fn):
        bloom = BloomForCausalLM.from_pretrained(model_name)
        wte = bloom.transformer.word_embeddings.state_dict()
        torch.save(wte, emb_fn)
    else:
        wte = torch.load(emb_fn)

    f_emb = 2048
    n_vocab = 250880
    model = AutoregressiveWrapper(
        GatedStateSpacesLM(
            num_tokens=n_vocab,
            dim=f_emb,
            depth=24,
        ),
    )

    model.net.token_emb.requires_grad_(False)
    model.net.token_emb.load_state_dict(wte)

    to_logits = nn.Linear(f_emb, n_vocab, bias=False)
    to_logits.requires_grad_(False)
    to_logits.load_state_dict(wte)

    model.net.to_logits = nn.Sequential(
        nn.LayerNorm(f_emb),
        to_logits,
    )
    model.load_state_dict(torch.load("model3.pt"))
    model = model.to(accelerator.device)

    if accelerator.is_main_process:
        wandb.watch(model)

    optim = AdamW(model.parameters(), 1e-4)
    sch = CosineAnnealingWarmRestarts(
        optim,
        T_0=1000,
        T_mult=2,
        eta_min=1e-7,
    )

    bs = 1
    kk = 2048
    tok: BloomTokenizerFast = BloomTokenizerFast.from_pretrained(model_name)
    dsx = ThePileTokenized(
        ThePile("train"),
        tokenizer=tok,
        max_length=kk,
        repeat_factor=4 / 3,
    )
    dlx = DataLoader(
        dsx,
        batch_size=bs,
        num_workers=12,
    )

    prog = tqdm(dlx, disable=not accelerator.is_main_process)

    model = accelerator.prepare(model)
    optim, dlx, sch = accelerator.prepare(optim, dlx, sch)

    optim.zero_grad()
    for i, batch in enumerate(prog):
        batch = batch.to(accelerator.device)
        with accelerator.accumulate(model):
            with accelerator.autocast():
                los = model(batch)
            accelerator.backward(los)
            if accelerator.sync_gradients:
                accelerator.clip_grad_norm_(model.parameters(), 1.0)
            optim.step()
            optim.zero_grad()
            if not accelerator.optimizer_step_was_skipped:
                sch.step()

        if i % 1000 == 0:
            unwrapped_model = accelerator.unwrap_model(model)
            b, n = 1, 512
            init = torch.tensor([[2]] * b).to(accelerator.device)
            prd = unwrapped_model.generate(init, n)
            prd = [tok.decode(p) for p in prd]
            try:
                accelerator.log(
                    dict(
                        text=wandb.Html(
                            "<hr>".join(p.replace("\n", "<br>") for p in prd)
                        )
                    ),
                    step=i,
                )
            except Exception as ex:
                accelerator.print("Failed to log to W&B...", ex)
            sd = unwrapped_model.state_dict()
            # sd.pop('net.to_logits.weight')
            accelerator.save(sd, "model4.pt")

        if i % 10 == 0:
            accelerator.log(
                dict(
                    loss=los.item(),
                    lr=optim.param_groups[0]["lr"],
                ),
                step=i,
            )
            prog.set_postfix(loss=los.item())


if __name__ == "__main__":
    main()