nayan06 commited on
Commit
63068ea
·
1 Parent(s): 78b87f6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -12
README.md CHANGED
@@ -4,32 +4,29 @@ tags:
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
 
7
 
8
  ---
9
 
10
- # {MODEL_NAME}
11
 
12
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
  <!--- Describe your model here -->
15
 
16
- ## Usage (Sentence-Transformers)
17
 
18
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
 
20
  ```
21
- pip install -U sentence-transformers
22
  ```
23
 
24
  Then you can use the model like this:
25
 
26
  ```python
27
- from sentence_transformers import SentenceTransformer
28
- sentences = ["This is an example sentence", "Each sentence is converted"]
29
-
30
- model = SentenceTransformer('{MODEL_NAME}')
31
- embeddings = model.encode(sentences)
32
- print(embeddings)
33
  ```
34
 
35
 
@@ -77,12 +74,15 @@ Parameters of the fit()-Method:
77
  ## Full Model Architecture
78
  ```
79
  SentenceTransformer(
80
- (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
81
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
82
  (2): Normalize()
83
  )
84
  ```
85
 
 
 
 
86
  ## Citing & Authors
87
 
88
  <!--- Describe where people can find more information -->
 
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
7
+ - transformers
8
 
9
  ---
10
 
11
+ # Setfit Classification Model ON Conversion Dataset With L12 sbert Model as Base
12
 
13
+ This is a Setfit Model with the L6 model as a Base for classification.
14
 
15
  <!--- Describe your model here -->
16
 
17
+ ## Usage (Setfit)
18
 
 
19
 
20
  ```
21
+ pip install setfit
22
  ```
23
 
24
  Then you can use the model like this:
25
 
26
  ```python
27
+ from setfit import SetFitModel
28
+ model = SetFitModel.from_pretrained("nayan06/binary-classifier-conversion-intent-1.1-l12")
29
+ prediction = model(['i want to buy thing'])
 
 
 
30
  ```
31
 
32
 
 
74
  ## Full Model Architecture
75
  ```
76
  SentenceTransformer(
77
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
78
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
79
  (2): Normalize()
80
  )
81
  ```
82
 
83
+ ## Dataset Used
84
+ https://huggingface.co/datasets/nayan06/conversion1.0
85
+
86
  ## Citing & Authors
87
 
88
  <!--- Describe where people can find more information -->