nazim-ks commited on
Commit
25880d0
·
verified ·
1 Parent(s): 445b8ac

Model save

Browse files
Files changed (3) hide show
  1. README.md +90 -0
  2. all_results.json +8 -0
  3. train_results.json +8 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google/vit-base-patch16-224-in21k
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - imagefolder
9
+ metrics:
10
+ - accuracy
11
+ - f1
12
+ model-index:
13
+ - name: got-model
14
+ results:
15
+ - task:
16
+ name: Image Classification
17
+ type: image-classification
18
+ dataset:
19
+ name: imagefolder
20
+ type: imagefolder
21
+ config: default
22
+ split: test
23
+ args: default
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.9428571428571428
28
+ - name: F1
29
+ type: f1
30
+ value: 0.9442260195944405
31
+ ---
32
+
33
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
34
+ should probably proofread and complete it, then remove this comment. -->
35
+
36
+ # got-model
37
+
38
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
39
+ It achieves the following results on the evaluation set:
40
+ - Loss: 0.1971
41
+ - Accuracy: 0.9429
42
+ - F1: 0.9442
43
+
44
+ ## Model description
45
+
46
+ More information needed
47
+
48
+ ## Intended uses & limitations
49
+
50
+ More information needed
51
+
52
+ ## Training and evaluation data
53
+
54
+ More information needed
55
+
56
+ ## Training procedure
57
+
58
+ ### Training hyperparameters
59
+
60
+ The following hyperparameters were used during training:
61
+ - learning_rate: 2e-05
62
+ - train_batch_size: 16
63
+ - eval_batch_size: 16
64
+ - seed: 42
65
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
+ - lr_scheduler_type: linear
67
+ - num_epochs: 10
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
72
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
73
+ | 0.073 | 1.0 | 42 | 0.2416 | 0.9238 | 0.9250 |
74
+ | 0.061 | 2.0 | 84 | 0.2160 | 0.9333 | 0.9345 |
75
+ | 0.0543 | 3.0 | 126 | 0.2114 | 0.9429 | 0.9432 |
76
+ | 0.0497 | 4.0 | 168 | 0.2028 | 0.9429 | 0.9442 |
77
+ | 0.046 | 5.0 | 210 | 0.1985 | 0.9429 | 0.9442 |
78
+ | 0.0435 | 6.0 | 252 | 0.2009 | 0.9429 | 0.9442 |
79
+ | 0.0414 | 7.0 | 294 | 0.1976 | 0.9429 | 0.9442 |
80
+ | 0.0402 | 8.0 | 336 | 0.1978 | 0.9429 | 0.9442 |
81
+ | 0.0391 | 9.0 | 378 | 0.1967 | 0.9429 | 0.9442 |
82
+ | 0.0385 | 10.0 | 420 | 0.1971 | 0.9429 | 0.9442 |
83
+
84
+
85
+ ### Framework versions
86
+
87
+ - Transformers 4.45.2
88
+ - Pytorch 2.4.1+cu121
89
+ - Datasets 3.0.1
90
+ - Tokenizers 0.20.0
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "total_flos": 5.130291560557363e+17,
4
+ "train_loss": 0.04840113861220224,
5
+ "train_runtime": 1424.2891,
6
+ "train_samples_per_second": 4.648,
7
+ "train_steps_per_second": 0.295
8
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "total_flos": 5.130291560557363e+17,
4
+ "train_loss": 0.04840113861220224,
5
+ "train_runtime": 1424.2891,
6
+ "train_samples_per_second": 4.648,
7
+ "train_steps_per_second": 0.295
8
+ }