Model save
Browse files- README.md +15 -15
- all_results.json +2 -2
- train_results.json +2 -2
README.md
CHANGED
@@ -24,10 +24,10 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
-
value: 0.
|
28 |
- name: F1
|
29 |
type: f1
|
30 |
-
value: 0.
|
31 |
---
|
32 |
|
33 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -37,9 +37,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
37 |
|
38 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
39 |
It achieves the following results on the evaluation set:
|
40 |
-
- Loss:
|
41 |
-
- Accuracy: 0.
|
42 |
-
- F1: 0.
|
43 |
|
44 |
## Model description
|
45 |
|
@@ -70,16 +70,16 @@ The following hyperparameters were used during training:
|
|
70 |
|
71 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
72 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
|
84 |
|
85 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
+
value: 0.09523809523809523
|
28 |
- name: F1
|
29 |
type: f1
|
30 |
+
value: 0.016563146997929608
|
31 |
---
|
32 |
|
33 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
37 |
|
38 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
39 |
It achieves the following results on the evaluation set:
|
40 |
+
- Loss: nan
|
41 |
+
- Accuracy: 0.0952
|
42 |
+
- F1: 0.0166
|
43 |
|
44 |
## Model description
|
45 |
|
|
|
70 |
|
71 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
72 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
73 |
+
| 0.0 | 1.0 | 42 | nan | 0.0952 | 0.0166 |
|
74 |
+
| 0.0 | 2.0 | 84 | nan | 0.0952 | 0.0166 |
|
75 |
+
| 0.0 | 3.0 | 126 | nan | 0.0952 | 0.0166 |
|
76 |
+
| 0.0 | 4.0 | 168 | nan | 0.0952 | 0.0166 |
|
77 |
+
| 0.0 | 5.0 | 210 | nan | 0.0952 | 0.0166 |
|
78 |
+
| 0.0 | 6.0 | 252 | nan | 0.0952 | 0.0166 |
|
79 |
+
| 0.0 | 7.0 | 294 | nan | 0.0952 | 0.0166 |
|
80 |
+
| 0.0 | 8.0 | 336 | nan | 0.0952 | 0.0166 |
|
81 |
+
| 0.0 | 9.0 | 378 | nan | 0.0952 | 0.0166 |
|
82 |
+
| 0.0 | 10.0 | 420 | nan | 0.0952 | 0.0166 |
|
83 |
|
84 |
|
85 |
### Framework versions
|
all_results.json
CHANGED
@@ -8,7 +8,7 @@
|
|
8 |
"eval_steps_per_second": 2.149,
|
9 |
"total_flos": 5.130291560557363e+17,
|
10 |
"train_loss": 0.0,
|
11 |
-
"train_runtime":
|
12 |
-
"train_samples_per_second": 12.
|
13 |
"train_steps_per_second": 0.803
|
14 |
}
|
|
|
8 |
"eval_steps_per_second": 2.149,
|
9 |
"total_flos": 5.130291560557363e+17,
|
10 |
"train_loss": 0.0,
|
11 |
+
"train_runtime": 522.9497,
|
12 |
+
"train_samples_per_second": 12.659,
|
13 |
"train_steps_per_second": 0.803
|
14 |
}
|
train_results.json
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"epoch": 10.0,
|
3 |
"total_flos": 5.130291560557363e+17,
|
4 |
"train_loss": 0.0,
|
5 |
-
"train_runtime":
|
6 |
-
"train_samples_per_second": 12.
|
7 |
"train_steps_per_second": 0.803
|
8 |
}
|
|
|
2 |
"epoch": 10.0,
|
3 |
"total_flos": 5.130291560557363e+17,
|
4 |
"train_loss": 0.0,
|
5 |
+
"train_runtime": 522.9497,
|
6 |
+
"train_samples_per_second": 12.659,
|
7 |
"train_steps_per_second": 0.803
|
8 |
}
|