--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 model-index: - name: got-model results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.09523809523809523 - name: F1 type: f1 value: 0.016563146997929608 --- # got-model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: nan - Accuracy: 0.0952 - F1: 0.0166 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0 | 1.0 | 42 | nan | 0.0952 | 0.0166 | | 0.0 | 2.0 | 84 | nan | 0.0952 | 0.0166 | | 0.0 | 3.0 | 126 | nan | 0.0952 | 0.0166 | | 0.0 | 4.0 | 168 | nan | 0.0952 | 0.0166 | | 0.0 | 5.0 | 210 | nan | 0.0952 | 0.0166 | | 0.0 | 6.0 | 252 | nan | 0.0952 | 0.0166 | | 0.0 | 7.0 | 294 | nan | 0.0952 | 0.0166 | | 0.0 | 8.0 | 336 | nan | 0.0952 | 0.0166 | | 0.0 | 9.0 | 378 | nan | 0.0952 | 0.0166 | | 0.0 | 10.0 | 420 | nan | 0.0952 | 0.0166 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3