File size: 2,585 Bytes
842ae31 4949687 43de342 4949687 43de342 842ae31 4949687 1465920 4949687 27e9642 4949687 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
library_name: transformers
license: apache-2.0
base_model:
- nbeerbower/flammen16-mistral-7B
datasets:
- wenbopan/Chinese-dpo-pairs
tags:
- experimental
---
![image/png](https://huggingface.co/nbeerbower/flammen13X-mistral-7B/resolve/main/flammen13x.png)
# flammen16-chinese-DPO-7B
A Mistral 7B LLM built from merging pretrained models and finetuning on [Wenbo Pan](https://huggingface.co/wenbopan)'s [Chinese DPO Pairs](https://huggingface.co/datasets/wenbopan/Chinese-dpo-pairs).
Flammen specializes in exceptional character roleplay, creative writing, and general intelligence.
Please note this is an experimental model and is not recommended for production use.
我是一款基于混合预训练模型并在温博潘的中文DPO对话双方数据上微调的缅德尔7B大语言模型(LLM)。它的特长在于出色的角色扮演、创造性写作和通用智能。请注意,这是一个实验性模型,不适宜生产使用。
### Method
Finetuned using an A100 on Google Colab. 🙏
[Fine-tune a Mistral-7b model with Direct Preference Optimization](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac) - [Maxime Labonne](https://huggingface.co/mlabonne)
### Configuration
LoRA, model, and training settings:
```python
# LoRA configuration
peft_config = LoraConfig(
r=16,
lora_alpha=16,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)
# Model to fine-tune
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
load_in_4bit=True
)
model.config.use_cache = False
# Reference model
ref_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
load_in_4bit=True
)
# Training arguments
training_args = TrainingArguments(
per_device_train_batch_size=2,
gradient_accumulation_steps=2,
gradient_checkpointing=True,
learning_rate=2e-5,
lr_scheduler_type="cosine",
max_steps=1000,
save_strategy="no",
logging_steps=1,
output_dir=new_model,
optim="paged_adamw_32bit",
warmup_steps=100,
bf16=True,
report_to="wandb",
)
# Create DPO trainer
dpo_trainer = DPOTrainer(
model,
ref_model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
peft_config=peft_config,
beta=0.1,
max_prompt_length=1024,
max_length=1536,
force_use_ref_model=True
)
# Fine-tune model with DPO
dpo_trainer.train()
``` |