nbroad HF staff commited on
Commit
6af222b
·
verified ·
1 Parent(s): 29ac2ce

End of training

Browse files
Files changed (5) hide show
  1. README.md +23 -2
  2. all_results.json +6 -6
  3. eval_results.json +3 -3
  4. train_results.json +3 -3
  5. trainer_state.json +12 -12
README.md CHANGED
@@ -3,6 +3,8 @@ license: mit
3
  base_model: microsoft/deberta-v3-small
4
  tags:
5
  - generated_from_trainer
 
 
6
  metrics:
7
  - precision
8
  - recall
@@ -10,7 +12,26 @@ metrics:
10
  - accuracy
11
  model-index:
12
  - name: deberta-v3-small-company-names
13
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,7 +39,7 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # deberta-v3-small-company-names
20
 
21
- This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
  - Loss: 0.0707
24
  - Precision: 0.7688
 
3
  base_model: microsoft/deberta-v3-small
4
  tags:
5
  - generated_from_trainer
6
+ datasets:
7
+ - nbroad/company_names
8
  metrics:
9
  - precision
10
  - recall
 
12
  - accuracy
13
  model-index:
14
  - name: deberta-v3-small-company-names
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: nbroad/company_names
21
+ type: nbroad/company_names
22
+ metrics:
23
+ - name: Precision
24
+ type: precision
25
+ value: 0.7687575810084907
26
+ - name: Recall
27
+ type: recall
28
+ value: 0.7920906980896268
29
+ - name: F1
30
+ type: f1
31
+ value: 0.780249736194161
32
+ - name: Accuracy
33
+ type: accuracy
34
+ value: 0.9766189637193916
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
39
 
40
  # deberta-v3-small-company-names
41
 
42
+ This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the nbroad/company_names dataset.
43
  It achieves the following results on the evaluation set:
44
  - Loss: 0.0707
45
  - Precision: 0.7688
all_results.json CHANGED
@@ -5,13 +5,13 @@
5
  "eval_loss": 0.07066146284341812,
6
  "eval_precision": 0.7687575810084907,
7
  "eval_recall": 0.7920906980896268,
8
- "eval_runtime": 9.3539,
9
  "eval_samples": 14160,
10
- "eval_samples_per_second": 1513.8,
11
- "eval_steps_per_second": 189.225,
12
  "train_loss": 0.06725984670200778,
13
- "train_runtime": 298.049,
14
  "train_samples": 102018,
15
- "train_samples_per_second": 1026.858,
16
- "train_steps_per_second": 21.399
17
  }
 
5
  "eval_loss": 0.07066146284341812,
6
  "eval_precision": 0.7687575810084907,
7
  "eval_recall": 0.7920906980896268,
8
+ "eval_runtime": 9.4863,
9
  "eval_samples": 14160,
10
+ "eval_samples_per_second": 1492.677,
11
+ "eval_steps_per_second": 186.585,
12
  "train_loss": 0.06725984670200778,
13
+ "train_runtime": 305.6957,
14
  "train_samples": 102018,
15
+ "train_samples_per_second": 1001.172,
16
+ "train_steps_per_second": 20.864
17
  }
eval_results.json CHANGED
@@ -5,8 +5,8 @@
5
  "eval_loss": 0.07066146284341812,
6
  "eval_precision": 0.7687575810084907,
7
  "eval_recall": 0.7920906980896268,
8
- "eval_runtime": 9.3539,
9
  "eval_samples": 14160,
10
- "eval_samples_per_second": 1513.8,
11
- "eval_steps_per_second": 189.225
12
  }
 
5
  "eval_loss": 0.07066146284341812,
6
  "eval_precision": 0.7687575810084907,
7
  "eval_recall": 0.7920906980896268,
8
+ "eval_runtime": 9.4863,
9
  "eval_samples": 14160,
10
+ "eval_samples_per_second": 1492.677,
11
+ "eval_steps_per_second": 186.585
12
  }
train_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "epoch": 3.0,
3
  "train_loss": 0.06725984670200778,
4
- "train_runtime": 298.049,
5
  "train_samples": 102018,
6
- "train_samples_per_second": 1026.858,
7
- "train_steps_per_second": 21.399
8
  }
 
1
  {
2
  "epoch": 3.0,
3
  "train_loss": 0.06725984670200778,
4
+ "train_runtime": 305.6957,
5
  "train_samples": 102018,
6
+ "train_samples_per_second": 1001.172,
7
+ "train_steps_per_second": 20.864
8
  }
trainer_state.json CHANGED
@@ -1287,9 +1287,9 @@
1287
  "eval_loss": 0.06570570170879364,
1288
  "eval_precision": 0.7414822915790359,
1289
  "eval_recall": 0.786823781467595,
1290
- "eval_runtime": 9.374,
1291
- "eval_samples_per_second": 1510.553,
1292
- "eval_steps_per_second": 188.819,
1293
  "step": 2126
1294
  },
1295
  {
@@ -2577,9 +2577,9 @@
2577
  "eval_loss": 0.0650782585144043,
2578
  "eval_precision": 0.7630785141773679,
2579
  "eval_recall": 0.7903945723977861,
2580
- "eval_runtime": 9.3595,
2581
- "eval_samples_per_second": 1512.897,
2582
- "eval_steps_per_second": 189.112,
2583
  "step": 4252
2584
  },
2585
  {
@@ -3861,9 +3861,9 @@
3861
  "eval_loss": 0.07066146284341812,
3862
  "eval_precision": 0.7687575810084907,
3863
  "eval_recall": 0.7920906980896268,
3864
- "eval_runtime": 9.4439,
3865
- "eval_samples_per_second": 1499.38,
3866
- "eval_steps_per_second": 187.423,
3867
  "step": 6378
3868
  },
3869
  {
@@ -3871,9 +3871,9 @@
3871
  "step": 6378,
3872
  "total_flos": 6259843525582944.0,
3873
  "train_loss": 0.06725984670200778,
3874
- "train_runtime": 298.049,
3875
- "train_samples_per_second": 1026.858,
3876
- "train_steps_per_second": 21.399
3877
  }
3878
  ],
3879
  "logging_steps": 10,
 
1287
  "eval_loss": 0.06570570170879364,
1288
  "eval_precision": 0.7414822915790359,
1289
  "eval_recall": 0.786823781467595,
1290
+ "eval_runtime": 9.3826,
1291
+ "eval_samples_per_second": 1509.169,
1292
+ "eval_steps_per_second": 188.646,
1293
  "step": 2126
1294
  },
1295
  {
 
2577
  "eval_loss": 0.0650782585144043,
2578
  "eval_precision": 0.7630785141773679,
2579
  "eval_recall": 0.7903945723977861,
2580
+ "eval_runtime": 9.7722,
2581
+ "eval_samples_per_second": 1449.015,
2582
+ "eval_steps_per_second": 181.127,
2583
  "step": 4252
2584
  },
2585
  {
 
3861
  "eval_loss": 0.07066146284341812,
3862
  "eval_precision": 0.7687575810084907,
3863
  "eval_recall": 0.7920906980896268,
3864
+ "eval_runtime": 9.5779,
3865
+ "eval_samples_per_second": 1478.396,
3866
+ "eval_steps_per_second": 184.799,
3867
  "step": 6378
3868
  },
3869
  {
 
3871
  "step": 6378,
3872
  "total_flos": 6259843525582944.0,
3873
  "train_loss": 0.06725984670200778,
3874
+ "train_runtime": 305.6957,
3875
+ "train_samples_per_second": 1001.172,
3876
+ "train_steps_per_second": 20.864
3877
  }
3878
  ],
3879
  "logging_steps": 10,