--- base_model: FPTAI/vibert-base-cased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: vibert-base-cased-ed results: [] --- # vibert-base-cased-ed This model is a fine-tuned version of [FPTAI/vibert-base-cased](https://huggingface.co/FPTAI/vibert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0595 - F1 Micro: 0.7034 - F1 Macro: 0.0430 - Accuracy: 0.6374 - Recall Micro: 0.6094 - Precision Micro: 0.8317 - Recall Macro: 0.0392 - Precision Macro: 0.0621 - F1: 0.5913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Accuracy | Recall Micro | Precision Micro | Recall Macro | Precision Macro | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:------------:|:---------------:|:------------:|:---------------:|:------:| | 0.0696 | 1.0 | 1526 | 0.0711 | 0.6892 | 0.0243 | 0.7054 | 0.6737 | 0.7054 | 0.0294 | 0.0207 | 0.5573 | | 0.055 | 2.0 | 3052 | 0.0622 | 0.6965 | 0.0252 | 0.6345 | 0.6060 | 0.8187 | 0.0265 | 0.0241 | 0.5775 | | 0.0631 | 3.0 | 4578 | 0.0598 | 0.7054 | 0.0255 | 0.6436 | 0.6147 | 0.8274 | 0.0268 | 0.0243 | 0.5847 | | 0.0534 | 4.0 | 6104 | 0.0591 | 0.6980 | 0.0260 | 0.6268 | 0.5989 | 0.8362 | 0.0265 | 0.0540 | 0.5809 | | 0.0296 | 5.0 | 7630 | 0.0595 | 0.7034 | 0.0430 | 0.6374 | 0.6094 | 0.8317 | 0.0392 | 0.0621 | 0.5913 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1