--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: tuning-miner-testbed-ad9b0fa2-323a-4d04-be5e-1304b49c48da results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-1B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null dataset_processes: 12 datasets: - data_files: - /workspace/axolotl/data/ad9b0fa2-323a-4d04-be5e-1304b49c48da.json ds_type: json path: /workspace/axolotl/data/ad9b0fa2-323a-4d04-be5e-1304b49c48da.json type: field_input: problem field_instruction: type field_output: solution system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 512 eval_table_size: null evals_per_epoch: 2 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: ncbateman/tuning-miner-testbed-ad9b0fa2-323a-4d04-be5e-1304b49c48da hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 4 mlflow_experiment_name: https://5a301a635a9d0ac3cb7fcc3bf373c3c3.r2.cloudflarestorage.com/tuning/lighteval/MATH-Hard_train_data.json?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=d49fdd0cc9750a097b58ba35b2d9fbed%2F20241024%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20241024T015513Z&X-Amz-Expires=604800&X-Amz-SignedHeaders=host&X-Amz-Signature=0879a56693622d0d57a6f707ace9e2a5e73d3647c1a227a4016e3e4011effe25 model_type: LlamaForCausalLM num_epochs: 5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 20 save_strategy: steps sequence_len: 4096 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false val_set_size: 0.05 wandb_entity: breakfasthut wandb_mode: online wandb_project: tuning-miner wandb_run: miner wandb_runid: ad9b0fa2-323a-4d04-be5e-1304b49c48da warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# tuning-miner-testbed-ad9b0fa2-323a-4d04-be5e-1304b49c48da This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8864 | 0.0095 | 1 | 0.9756 | | 0.8585 | 0.4964 | 52 | 0.8117 | | 0.7169 | 0.9928 | 104 | 0.7860 | | 0.7558 | 1.4893 | 156 | 0.7723 | | 0.7814 | 1.9857 | 208 | 0.7655 | | 0.6849 | 2.4821 | 260 | 0.7670 | | 0.7456 | 2.9785 | 312 | 0.7646 | | 0.6037 | 3.4749 | 364 | 0.7706 | | 0.6335 | 3.9714 | 416 | 0.7703 | | 0.5835 | 4.4678 | 468 | 0.7749 | | 0.7157 | 4.9642 | 520 | 0.7753 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1