File size: 5,469 Bytes
34cf3cc 6bca9e3 34cf3cc 6bca9e3 34cf3cc 6bca9e3 34cf3cc 6bca9e3 34cf3cc 6bca9e3 34cf3cc 6bca9e3 34cf3cc 6bca9e3 34cf3cc 6bca9e3 34cf3cc 6bca9e3 34cf3cc 6bca9e3 34cf3cc 6bca9e3 34cf3cc 6bca9e3 34cf3cc 6bca9e3 34cf3cc 6bca9e3 34cf3cc 6bca9e3 34cf3cc 6bca9e3 34cf3cc 6bca9e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
- bleu
model-index:
- name: wav2vec2-mms-1b-malayalam-colab-CV17.0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: ml
split: test
args: ml
metrics:
- name: Wer
type: wer
value: 1.0315925209542232
- name: Bleu
type: bleu
value:
bleu: 0.0
precisions:
- 0.0008639308855291577
- 0.0
- 0.0
- 0.0
brevity_penalty: 0.7118010694449419
length_ratio: 0.7462927143778207
translation_length: 2315
reference_length: 3102
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-mms-1b-malayalam-colab-CV17.0
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 4.7578
- Wer: 1.0316
- Cer: 0.7469
- Bleu: {'bleu': 0.0, 'precisions': [0.0008639308855291577, 0.0, 0.0, 0.0], 'brevity_penalty': 0.7118010694449419, 'length_ratio': 0.7462927143778207, 'translation_length': 2315, 'reference_length': 3102}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bleu |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| 21.8941 | 3.1496 | 200 | 14.1370 | 1.0 | 1.0292 | {'bleu': 0.0, 'precisions': [0.0, 0.0, 0.0, 0.0], 'brevity_penalty': 0.08102287291060646, 'length_ratio': 0.2846550612508059, 'translation_length': 883, 'reference_length': 3102} |
| 8.5677 | 6.2992 | 400 | 6.3226 | 1.0071 | 0.8568 | {'bleu': 0.0, 'precisions': [0.0, 0.0, 0.0, 0.0], 'brevity_penalty': 0.2500351312096836, 'length_ratio': 0.4190844616376531, 'translation_length': 1300, 'reference_length': 3102} |
| 6.6037 | 9.4488 | 600 | 5.6520 | 1.0351 | 0.7789 | {'bleu': 0.0, 'precisions': [0.0, 0.0, 0.0, 0.0], 'brevity_penalty': 0.6082895680797644, 'length_ratio': 0.6679561573178594, 'translation_length': 2072, 'reference_length': 3102} |
| 6.0799 | 12.5984 | 800 | 5.2294 | 1.0574 | 0.7594 | {'bleu': 0.0, 'precisions': [0.00041631973355537054, 0.0, 0.0, 0.0], 'brevity_penalty': 0.7471989379147929, 'length_ratio': 0.7743391360412637, 'translation_length': 2402, 'reference_length': 3102} |
| 5.7804 | 15.7480 | 1000 | 5.1733 | 1.0329 | 0.7629 | {'bleu': 0.0, 'precisions': [0.0, 0.0, 0.0, 0.0], 'brevity_penalty': 0.6734028056038747, 'length_ratio': 0.7166344294003868, 'translation_length': 2223, 'reference_length': 3102} |
| 5.4453 | 18.8976 | 1200 | 4.9821 | 1.0525 | 0.7467 | {'bleu': 0.0, 'precisions': [0.0004042037186742118, 0.0, 0.0, 0.0], 'brevity_penalty': 0.7758159728382187, 'length_ratio': 0.7975499677627337, 'translation_length': 2474, 'reference_length': 3102} |
| 5.2983 | 22.0472 | 1400 | 4.8784 | 1.0297 | 0.7521 | {'bleu': 0.0, 'precisions': [0.0008806693086745927, 0.0, 0.0, 0.0], 'brevity_penalty': 0.693559602972643, 'length_ratio': 0.7321083172147002, 'translation_length': 2271, 'reference_length': 3102} |
| 5.0862 | 25.1969 | 1600 | 4.7948 | 1.0358 | 0.7446 | {'bleu': 0.0, 'precisions': [0.0008399832003359933, 0.0, 0.0, 0.0], 'brevity_penalty': 0.7387365301547462, 'length_ratio': 0.7675693101225016, 'translation_length': 2381, 'reference_length': 3102} |
| 4.9884 | 28.3465 | 1800 | 4.7578 | 1.0316 | 0.7479 | {'bleu': 0.0, 'precisions': [0.000864304235090752, 0.0, 0.0, 0.0], 'brevity_penalty': 0.711389009553914, 'length_ratio': 0.7459703417150225, 'translation_length': 2314, 'reference_length': 3102} |
| 5.0447 | 31.4961 | 2000 | 4.7578 | 1.0316 | 0.7469 | {'bleu': 0.0, 'precisions': [0.0008639308855291577, 0.0, 0.0, 0.0], 'brevity_penalty': 0.7118010694449419, 'length_ratio': 0.7462927143778207, 'translation_length': 2315, 'reference_length': 3102} |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|