File size: 5,469 Bytes
34cf3cc
6bca9e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34cf3cc
 
6bca9e3
 
34cf3cc
6bca9e3
34cf3cc
6bca9e3
 
 
 
 
 
34cf3cc
6bca9e3
34cf3cc
6bca9e3
34cf3cc
6bca9e3
34cf3cc
6bca9e3
34cf3cc
6bca9e3
34cf3cc
6bca9e3
34cf3cc
6bca9e3
34cf3cc
6bca9e3
34cf3cc
6bca9e3
 
 
 
 
 
 
 
 
 
 
 
34cf3cc
6bca9e3
34cf3cc
6bca9e3
 
 
 
 
 
 
 
 
 
 
 
34cf3cc
 
6bca9e3
34cf3cc
6bca9e3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
- bleu
model-index:
- name: wav2vec2-mms-1b-malayalam-colab-CV17.0
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_17_0
      type: common_voice_17_0
      config: ml
      split: test
      args: ml
    metrics:
    - name: Wer
      type: wer
      value: 1.0315925209542232
    - name: Bleu
      type: bleu
      value:
        bleu: 0.0
        precisions:
        - 0.0008639308855291577
        - 0.0
        - 0.0
        - 0.0
        brevity_penalty: 0.7118010694449419
        length_ratio: 0.7462927143778207
        translation_length: 2315
        reference_length: 3102
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-mms-1b-malayalam-colab-CV17.0

This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 4.7578
- Wer: 1.0316
- Cer: 0.7469
- Bleu: {'bleu': 0.0, 'precisions': [0.0008639308855291577, 0.0, 0.0, 0.0], 'brevity_penalty': 0.7118010694449419, 'length_ratio': 0.7462927143778207, 'translation_length': 2315, 'reference_length': 3102}

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- training_steps: 2000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer    | Cer    | Bleu                                                                                                                                                                                                  |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| 21.8941       | 3.1496  | 200  | 14.1370         | 1.0    | 1.0292 | {'bleu': 0.0, 'precisions': [0.0, 0.0, 0.0, 0.0], 'brevity_penalty': 0.08102287291060646, 'length_ratio': 0.2846550612508059, 'translation_length': 883, 'reference_length': 3102}                    |
| 8.5677        | 6.2992  | 400  | 6.3226          | 1.0071 | 0.8568 | {'bleu': 0.0, 'precisions': [0.0, 0.0, 0.0, 0.0], 'brevity_penalty': 0.2500351312096836, 'length_ratio': 0.4190844616376531, 'translation_length': 1300, 'reference_length': 3102}                    |
| 6.6037        | 9.4488  | 600  | 5.6520          | 1.0351 | 0.7789 | {'bleu': 0.0, 'precisions': [0.0, 0.0, 0.0, 0.0], 'brevity_penalty': 0.6082895680797644, 'length_ratio': 0.6679561573178594, 'translation_length': 2072, 'reference_length': 3102}                    |
| 6.0799        | 12.5984 | 800  | 5.2294          | 1.0574 | 0.7594 | {'bleu': 0.0, 'precisions': [0.00041631973355537054, 0.0, 0.0, 0.0], 'brevity_penalty': 0.7471989379147929, 'length_ratio': 0.7743391360412637, 'translation_length': 2402, 'reference_length': 3102} |
| 5.7804        | 15.7480 | 1000 | 5.1733          | 1.0329 | 0.7629 | {'bleu': 0.0, 'precisions': [0.0, 0.0, 0.0, 0.0], 'brevity_penalty': 0.6734028056038747, 'length_ratio': 0.7166344294003868, 'translation_length': 2223, 'reference_length': 3102}                    |
| 5.4453        | 18.8976 | 1200 | 4.9821          | 1.0525 | 0.7467 | {'bleu': 0.0, 'precisions': [0.0004042037186742118, 0.0, 0.0, 0.0], 'brevity_penalty': 0.7758159728382187, 'length_ratio': 0.7975499677627337, 'translation_length': 2474, 'reference_length': 3102}  |
| 5.2983        | 22.0472 | 1400 | 4.8784          | 1.0297 | 0.7521 | {'bleu': 0.0, 'precisions': [0.0008806693086745927, 0.0, 0.0, 0.0], 'brevity_penalty': 0.693559602972643, 'length_ratio': 0.7321083172147002, 'translation_length': 2271, 'reference_length': 3102}   |
| 5.0862        | 25.1969 | 1600 | 4.7948          | 1.0358 | 0.7446 | {'bleu': 0.0, 'precisions': [0.0008399832003359933, 0.0, 0.0, 0.0], 'brevity_penalty': 0.7387365301547462, 'length_ratio': 0.7675693101225016, 'translation_length': 2381, 'reference_length': 3102}  |
| 4.9884        | 28.3465 | 1800 | 4.7578          | 1.0316 | 0.7479 | {'bleu': 0.0, 'precisions': [0.000864304235090752, 0.0, 0.0, 0.0], 'brevity_penalty': 0.711389009553914, 'length_ratio': 0.7459703417150225, 'translation_length': 2314, 'reference_length': 3102}    |
| 5.0447        | 31.4961 | 2000 | 4.7578          | 1.0316 | 0.7469 | {'bleu': 0.0, 'precisions': [0.0008639308855291577, 0.0, 0.0, 0.0], 'brevity_penalty': 0.7118010694449419, 'length_ratio': 0.7462927143778207, 'translation_length': 2315, 'reference_length': 3102}  |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1