|
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
def save(model, filename):
|
|
with open(filename, "wb") as f:
|
|
torch.save(model, f)
|
|
print("%s saved." % filename)
|
|
|
|
|
|
def load(filename):
|
|
net = torch.load(filename)
|
|
return net
|
|
|
|
|
|
class S(nn.Module):
|
|
def __init__(self, num_layers_in_fc_layers=1024):
|
|
super(S, self).__init__()
|
|
|
|
self.__nFeatures__ = 24
|
|
self.__nChs__ = 32
|
|
self.__midChs__ = 32
|
|
|
|
self.netcnnaud = nn.Sequential(
|
|
nn.Conv2d(1, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
|
nn.BatchNorm2d(64),
|
|
nn.ReLU(inplace=True),
|
|
nn.MaxPool2d(kernel_size=(1, 1), stride=(1, 1)),
|
|
nn.Conv2d(64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
|
nn.BatchNorm2d(192),
|
|
nn.ReLU(inplace=True),
|
|
nn.MaxPool2d(kernel_size=(3, 3), stride=(1, 2)),
|
|
nn.Conv2d(192, 384, kernel_size=(3, 3), padding=(1, 1)),
|
|
nn.BatchNorm2d(384),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(384, 256, kernel_size=(3, 3), padding=(1, 1)),
|
|
nn.BatchNorm2d(256),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(256, 256, kernel_size=(3, 3), padding=(1, 1)),
|
|
nn.BatchNorm2d(256),
|
|
nn.ReLU(inplace=True),
|
|
nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2)),
|
|
nn.Conv2d(256, 512, kernel_size=(5, 4), padding=(0, 0)),
|
|
nn.BatchNorm2d(512),
|
|
nn.ReLU(),
|
|
)
|
|
|
|
self.netfcaud = nn.Sequential(
|
|
nn.Linear(512, 512),
|
|
nn.BatchNorm1d(512),
|
|
nn.ReLU(),
|
|
nn.Linear(512, num_layers_in_fc_layers),
|
|
)
|
|
|
|
self.netfclip = nn.Sequential(
|
|
nn.Linear(512, 512),
|
|
nn.BatchNorm1d(512),
|
|
nn.ReLU(),
|
|
nn.Linear(512, num_layers_in_fc_layers),
|
|
)
|
|
|
|
self.netcnnlip = nn.Sequential(
|
|
nn.Conv3d(3, 96, kernel_size=(5, 7, 7), stride=(1, 2, 2), padding=0),
|
|
nn.BatchNorm3d(96),
|
|
nn.ReLU(inplace=True),
|
|
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2)),
|
|
nn.Conv3d(96, 256, kernel_size=(1, 5, 5), stride=(1, 2, 2), padding=(0, 1, 1)),
|
|
nn.BatchNorm3d(256),
|
|
nn.ReLU(inplace=True),
|
|
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
|
|
nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)),
|
|
nn.BatchNorm3d(256),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)),
|
|
nn.BatchNorm3d(256),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)),
|
|
nn.BatchNorm3d(256),
|
|
nn.ReLU(inplace=True),
|
|
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2)),
|
|
nn.Conv3d(256, 512, kernel_size=(1, 6, 6), padding=0),
|
|
nn.BatchNorm3d(512),
|
|
nn.ReLU(inplace=True),
|
|
)
|
|
|
|
def forward_aud(self, x):
|
|
|
|
mid = self.netcnnaud(x)
|
|
|
|
mid = mid.view((mid.size()[0], -1))
|
|
|
|
out = self.netfcaud(mid)
|
|
|
|
return out
|
|
|
|
def forward_lip(self, x):
|
|
|
|
mid = self.netcnnlip(x)
|
|
mid = mid.view((mid.size()[0], -1))
|
|
|
|
out = self.netfclip(mid)
|
|
|
|
return out
|
|
|
|
def forward_lipfeat(self, x):
|
|
|
|
mid = self.netcnnlip(x)
|
|
out = mid.view((mid.size()[0], -1))
|
|
|
|
|
|
return out
|
|
|