|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
from diffusers.modeling_utils import ModelMixin
|
|
from diffusers.utils import BaseOutput
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
from diffusers.models.attention import CrossAttention, FeedForward
|
|
|
|
from einops import rearrange, repeat
|
|
import math
|
|
from .utils import zero_module
|
|
|
|
|
|
@dataclass
|
|
class TemporalTransformer3DModelOutput(BaseOutput):
|
|
sample: torch.FloatTensor
|
|
|
|
|
|
if is_xformers_available():
|
|
import xformers
|
|
import xformers.ops
|
|
else:
|
|
xformers = None
|
|
|
|
|
|
def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict):
|
|
if motion_module_type == "Vanilla":
|
|
return VanillaTemporalModule(
|
|
in_channels=in_channels,
|
|
**motion_module_kwargs,
|
|
)
|
|
else:
|
|
raise ValueError
|
|
|
|
|
|
class VanillaTemporalModule(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
num_attention_heads=8,
|
|
num_transformer_block=2,
|
|
attention_block_types=("Temporal_Self", "Temporal_Self"),
|
|
cross_frame_attention_mode=None,
|
|
temporal_position_encoding=False,
|
|
temporal_position_encoding_max_len=24,
|
|
temporal_attention_dim_div=1,
|
|
zero_initialize=True,
|
|
):
|
|
super().__init__()
|
|
|
|
self.temporal_transformer = TemporalTransformer3DModel(
|
|
in_channels=in_channels,
|
|
num_attention_heads=num_attention_heads,
|
|
attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div,
|
|
num_layers=num_transformer_block,
|
|
attention_block_types=attention_block_types,
|
|
cross_frame_attention_mode=cross_frame_attention_mode,
|
|
temporal_position_encoding=temporal_position_encoding,
|
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
|
)
|
|
|
|
if zero_initialize:
|
|
self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)
|
|
|
|
def forward(self, input_tensor, temb, encoder_hidden_states, attention_mask=None, anchor_frame_idx=None):
|
|
hidden_states = input_tensor
|
|
hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask)
|
|
|
|
output = hidden_states
|
|
return output
|
|
|
|
|
|
class TemporalTransformer3DModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
num_attention_heads,
|
|
attention_head_dim,
|
|
num_layers,
|
|
attention_block_types=(
|
|
"Temporal_Self",
|
|
"Temporal_Self",
|
|
),
|
|
dropout=0.0,
|
|
norm_num_groups=32,
|
|
cross_attention_dim=768,
|
|
activation_fn="geglu",
|
|
attention_bias=False,
|
|
upcast_attention=False,
|
|
cross_frame_attention_mode=None,
|
|
temporal_position_encoding=False,
|
|
temporal_position_encoding_max_len=24,
|
|
):
|
|
super().__init__()
|
|
|
|
inner_dim = num_attention_heads * attention_head_dim
|
|
|
|
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
|
self.proj_in = nn.Linear(in_channels, inner_dim)
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
TemporalTransformerBlock(
|
|
dim=inner_dim,
|
|
num_attention_heads=num_attention_heads,
|
|
attention_head_dim=attention_head_dim,
|
|
attention_block_types=attention_block_types,
|
|
dropout=dropout,
|
|
norm_num_groups=norm_num_groups,
|
|
cross_attention_dim=cross_attention_dim,
|
|
activation_fn=activation_fn,
|
|
attention_bias=attention_bias,
|
|
upcast_attention=upcast_attention,
|
|
cross_frame_attention_mode=cross_frame_attention_mode,
|
|
temporal_position_encoding=temporal_position_encoding,
|
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
|
)
|
|
for d in range(num_layers)
|
|
]
|
|
)
|
|
self.proj_out = nn.Linear(inner_dim, in_channels)
|
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
|
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
|
video_length = hidden_states.shape[2]
|
|
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
|
|
|
batch, channel, height, weight = hidden_states.shape
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, channel)
|
|
hidden_states = self.proj_in(hidden_states)
|
|
|
|
|
|
for block in self.transformer_blocks:
|
|
hidden_states = block(
|
|
hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length
|
|
)
|
|
|
|
|
|
hidden_states = self.proj_out(hidden_states)
|
|
hidden_states = hidden_states.reshape(batch, height, weight, channel).permute(0, 3, 1, 2).contiguous()
|
|
|
|
output = hidden_states + residual
|
|
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
|
|
|
return output
|
|
|
|
|
|
class TemporalTransformerBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_attention_heads,
|
|
attention_head_dim,
|
|
attention_block_types=(
|
|
"Temporal_Self",
|
|
"Temporal_Self",
|
|
),
|
|
dropout=0.0,
|
|
norm_num_groups=32,
|
|
cross_attention_dim=768,
|
|
activation_fn="geglu",
|
|
attention_bias=False,
|
|
upcast_attention=False,
|
|
cross_frame_attention_mode=None,
|
|
temporal_position_encoding=False,
|
|
temporal_position_encoding_max_len=24,
|
|
):
|
|
super().__init__()
|
|
|
|
attention_blocks = []
|
|
norms = []
|
|
|
|
for block_name in attention_block_types:
|
|
attention_blocks.append(
|
|
VersatileAttention(
|
|
attention_mode=block_name.split("_")[0],
|
|
cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None,
|
|
query_dim=dim,
|
|
heads=num_attention_heads,
|
|
dim_head=attention_head_dim,
|
|
dropout=dropout,
|
|
bias=attention_bias,
|
|
upcast_attention=upcast_attention,
|
|
cross_frame_attention_mode=cross_frame_attention_mode,
|
|
temporal_position_encoding=temporal_position_encoding,
|
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
|
)
|
|
)
|
|
norms.append(nn.LayerNorm(dim))
|
|
|
|
self.attention_blocks = nn.ModuleList(attention_blocks)
|
|
self.norms = nn.ModuleList(norms)
|
|
|
|
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
|
self.ff_norm = nn.LayerNorm(dim)
|
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
|
|
for attention_block, norm in zip(self.attention_blocks, self.norms):
|
|
norm_hidden_states = norm(hidden_states)
|
|
hidden_states = (
|
|
attention_block(
|
|
norm_hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None,
|
|
video_length=video_length,
|
|
)
|
|
+ hidden_states
|
|
)
|
|
|
|
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
|
|
|
|
output = hidden_states
|
|
return output
|
|
|
|
|
|
class PositionalEncoding(nn.Module):
|
|
def __init__(self, d_model, dropout=0.0, max_len=24):
|
|
super().__init__()
|
|
self.dropout = nn.Dropout(p=dropout)
|
|
position = torch.arange(max_len).unsqueeze(1)
|
|
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
|
pe = torch.zeros(1, max_len, d_model)
|
|
pe[0, :, 0::2] = torch.sin(position * div_term)
|
|
pe[0, :, 1::2] = torch.cos(position * div_term)
|
|
self.register_buffer("pe", pe)
|
|
|
|
def forward(self, x):
|
|
x = x + self.pe[:, : x.size(1)]
|
|
return self.dropout(x)
|
|
|
|
|
|
class VersatileAttention(CrossAttention):
|
|
def __init__(
|
|
self,
|
|
attention_mode=None,
|
|
cross_frame_attention_mode=None,
|
|
temporal_position_encoding=False,
|
|
temporal_position_encoding_max_len=24,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
super().__init__(*args, **kwargs)
|
|
assert attention_mode == "Temporal"
|
|
|
|
self.attention_mode = attention_mode
|
|
self.is_cross_attention = kwargs["cross_attention_dim"] is not None
|
|
|
|
self.pos_encoder = (
|
|
PositionalEncoding(kwargs["query_dim"], dropout=0.0, max_len=temporal_position_encoding_max_len)
|
|
if (temporal_position_encoding and attention_mode == "Temporal")
|
|
else None
|
|
)
|
|
|
|
def extra_repr(self):
|
|
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
|
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
|
|
batch_size, sequence_length, _ = hidden_states.shape
|
|
|
|
if self.attention_mode == "Temporal":
|
|
d = hidden_states.shape[1]
|
|
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
|
|
|
|
if self.pos_encoder is not None:
|
|
hidden_states = self.pos_encoder(hidden_states)
|
|
|
|
encoder_hidden_states = (
|
|
repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
|
|
if encoder_hidden_states is not None
|
|
else encoder_hidden_states
|
|
)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
if self.group_norm is not None:
|
|
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
|
|
|
query = self.to_q(hidden_states)
|
|
dim = query.shape[-1]
|
|
query = self.reshape_heads_to_batch_dim(query)
|
|
|
|
if self.added_kv_proj_dim is not None:
|
|
raise NotImplementedError
|
|
|
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
|
key = self.to_k(encoder_hidden_states)
|
|
value = self.to_v(encoder_hidden_states)
|
|
|
|
key = self.reshape_heads_to_batch_dim(key)
|
|
value = self.reshape_heads_to_batch_dim(value)
|
|
|
|
if attention_mask is not None:
|
|
if attention_mask.shape[-1] != query.shape[1]:
|
|
target_length = query.shape[1]
|
|
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
|
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
|
|
|
|
|
|
if self._use_memory_efficient_attention_xformers:
|
|
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
|
|
|
|
hidden_states = hidden_states.to(query.dtype)
|
|
else:
|
|
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
|
hidden_states = self._attention(query, key, value, attention_mask)
|
|
else:
|
|
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
|
|
|
|
|
|
hidden_states = self.to_out[0](hidden_states)
|
|
|
|
|
|
hidden_states = self.to_out[1](hidden_states)
|
|
|
|
if self.attention_mode == "Temporal":
|
|
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
|
|
|
return hidden_states
|
|
|