|
|
|
|
|
import librosa
|
|
import librosa.filters
|
|
import numpy as np
|
|
from scipy import signal
|
|
from scipy.io import wavfile
|
|
from omegaconf import OmegaConf
|
|
import torch
|
|
|
|
audio_config_path = "configs/audio.yaml"
|
|
|
|
config = OmegaConf.load(audio_config_path)
|
|
|
|
|
|
def load_wav(path, sr):
|
|
return librosa.core.load(path, sr=sr)[0]
|
|
|
|
|
|
def save_wav(wav, path, sr):
|
|
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
|
|
|
|
wavfile.write(path, sr, wav.astype(np.int16))
|
|
|
|
|
|
def save_wavenet_wav(wav, path, sr):
|
|
librosa.output.write_wav(path, wav, sr=sr)
|
|
|
|
|
|
def preemphasis(wav, k, preemphasize=True):
|
|
if preemphasize:
|
|
return signal.lfilter([1, -k], [1], wav)
|
|
return wav
|
|
|
|
|
|
def inv_preemphasis(wav, k, inv_preemphasize=True):
|
|
if inv_preemphasize:
|
|
return signal.lfilter([1], [1, -k], wav)
|
|
return wav
|
|
|
|
|
|
def get_hop_size():
|
|
hop_size = config.audio.hop_size
|
|
if hop_size is None:
|
|
assert config.audio.frame_shift_ms is not None
|
|
hop_size = int(config.audio.frame_shift_ms / 1000 * config.audio.sample_rate)
|
|
return hop_size
|
|
|
|
|
|
def linearspectrogram(wav):
|
|
D = _stft(preemphasis(wav, config.audio.preemphasis, config.audio.preemphasize))
|
|
S = _amp_to_db(np.abs(D)) - config.audio.ref_level_db
|
|
|
|
if config.audio.signal_normalization:
|
|
return _normalize(S)
|
|
return S
|
|
|
|
|
|
def melspectrogram(wav):
|
|
D = _stft(preemphasis(wav, config.audio.preemphasis, config.audio.preemphasize))
|
|
S = _amp_to_db(_linear_to_mel(np.abs(D))) - config.audio.ref_level_db
|
|
|
|
if config.audio.signal_normalization:
|
|
return _normalize(S)
|
|
return S
|
|
|
|
|
|
def _lws_processor():
|
|
import lws
|
|
|
|
return lws.lws(config.audio.n_fft, get_hop_size(), fftsize=config.audio.win_size, mode="speech")
|
|
|
|
|
|
def _stft(y):
|
|
if config.audio.use_lws:
|
|
return _lws_processor(config.audio).stft(y).T
|
|
else:
|
|
return librosa.stft(y=y, n_fft=config.audio.n_fft, hop_length=get_hop_size(), win_length=config.audio.win_size)
|
|
|
|
|
|
|
|
|
|
def num_frames(length, fsize, fshift):
|
|
"""Compute number of time frames of spectrogram"""
|
|
pad = fsize - fshift
|
|
if length % fshift == 0:
|
|
M = (length + pad * 2 - fsize) // fshift + 1
|
|
else:
|
|
M = (length + pad * 2 - fsize) // fshift + 2
|
|
return M
|
|
|
|
|
|
def pad_lr(x, fsize, fshift):
|
|
"""Compute left and right padding"""
|
|
M = num_frames(len(x), fsize, fshift)
|
|
pad = fsize - fshift
|
|
T = len(x) + 2 * pad
|
|
r = (M - 1) * fshift + fsize - T
|
|
return pad, pad + r
|
|
|
|
|
|
|
|
|
|
def librosa_pad_lr(x, fsize, fshift):
|
|
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
|
|
|
|
|
|
|
|
_mel_basis = None
|
|
|
|
|
|
def _linear_to_mel(spectogram):
|
|
global _mel_basis
|
|
if _mel_basis is None:
|
|
_mel_basis = _build_mel_basis()
|
|
return np.dot(_mel_basis, spectogram)
|
|
|
|
|
|
def _build_mel_basis():
|
|
assert config.audio.fmax <= config.audio.sample_rate // 2
|
|
return librosa.filters.mel(
|
|
sr=config.audio.sample_rate,
|
|
n_fft=config.audio.n_fft,
|
|
n_mels=config.audio.num_mels,
|
|
fmin=config.audio.fmin,
|
|
fmax=config.audio.fmax,
|
|
)
|
|
|
|
|
|
def _amp_to_db(x):
|
|
min_level = np.exp(config.audio.min_level_db / 20 * np.log(10))
|
|
return 20 * np.log10(np.maximum(min_level, x))
|
|
|
|
|
|
def _db_to_amp(x):
|
|
return np.power(10.0, (x) * 0.05)
|
|
|
|
|
|
def _normalize(S):
|
|
if config.audio.allow_clipping_in_normalization:
|
|
if config.audio.symmetric_mels:
|
|
return np.clip(
|
|
(2 * config.audio.max_abs_value) * ((S - config.audio.min_level_db) / (-config.audio.min_level_db))
|
|
- config.audio.max_abs_value,
|
|
-config.audio.max_abs_value,
|
|
config.audio.max_abs_value,
|
|
)
|
|
else:
|
|
return np.clip(
|
|
config.audio.max_abs_value * ((S - config.audio.min_level_db) / (-config.audio.min_level_db)),
|
|
0,
|
|
config.audio.max_abs_value,
|
|
)
|
|
|
|
assert S.max() <= 0 and S.min() - config.audio.min_level_db >= 0
|
|
if config.audio.symmetric_mels:
|
|
return (2 * config.audio.max_abs_value) * (
|
|
(S - config.audio.min_level_db) / (-config.audio.min_level_db)
|
|
) - config.audio.max_abs_value
|
|
else:
|
|
return config.audio.max_abs_value * ((S - config.audio.min_level_db) / (-config.audio.min_level_db))
|
|
|
|
|
|
def _denormalize(D):
|
|
if config.audio.allow_clipping_in_normalization:
|
|
if config.audio.symmetric_mels:
|
|
return (
|
|
(np.clip(D, -config.audio.max_abs_value, config.audio.max_abs_value) + config.audio.max_abs_value)
|
|
* -config.audio.min_level_db
|
|
/ (2 * config.audio.max_abs_value)
|
|
) + config.audio.min_level_db
|
|
else:
|
|
return (
|
|
np.clip(D, 0, config.audio.max_abs_value) * -config.audio.min_level_db / config.audio.max_abs_value
|
|
) + config.audio.min_level_db
|
|
|
|
if config.audio.symmetric_mels:
|
|
return (
|
|
(D + config.audio.max_abs_value) * -config.audio.min_level_db / (2 * config.audio.max_abs_value)
|
|
) + config.audio.min_level_db
|
|
else:
|
|
return (D * -config.audio.min_level_db / config.audio.max_abs_value) + config.audio.min_level_db
|
|
|
|
|
|
def get_melspec_overlap(audio_samples, melspec_length=52):
|
|
mel_spec_overlap = melspectrogram(audio_samples.numpy())
|
|
mel_spec_overlap = torch.from_numpy(mel_spec_overlap)
|
|
i = 0
|
|
mel_spec_overlap_list = []
|
|
while i + melspec_length < mel_spec_overlap.shape[1] - 3:
|
|
mel_spec_overlap_list.append(mel_spec_overlap[:, i : i + melspec_length].unsqueeze(0))
|
|
i += 3
|
|
mel_spec_overlap = torch.stack(mel_spec_overlap_list)
|
|
return mel_spec_overlap
|
|
|