a2c-PandaReachDense-v2 / config.json
neatbullshit's picture
Initial commit
1de0d60
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd129aebac0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd129ae6300>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685230186611490281, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAARsPEPupfnz2MHiI/RsPEPupfnz2MHiI/RsPEPupfnz2MHiI/RsPEPupfnz2MHiI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQi2BP6w8db/aIjs/NRPIvzcgej9jRaO/uZymP7PUQr8N9Vg/ITUxvyI7g78WeJi9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABGw8Q+6l+fPYweIj/7kEI8QavUO9UBMzxGw8Q+6l+fPYweIj/7kEI8QavUO9UBMzxGw8Q+6l+fPYweIj/7kEI8QavUO9UBMzxGw8Q+6l+fPYweIj/7kEI8QavUO9UBMzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.38430232 0.07781966 0.6332786 ]\n [0.38430232 0.07781966 0.6332786 ]\n [0.38430232 0.07781966 0.6332786 ]\n [0.38430232 0.07781966 0.6332786 ]]", "desired_goal": "[[ 1.0091937 -0.957957 0.73100054]\n [-1.5630862 0.97705406 -1.275555 ]\n [ 1.3016578 -0.76105803 0.8474892 ]\n [-0.69221693 -1.0252421 -0.0744478 ]]", "observation": "[[0.38430232 0.07781966 0.6332786 0.01187539 0.00649014 0.01092573]\n [0.38430232 0.07781966 0.6332786 0.01187539 0.00649014 0.01092573]\n [0.38430232 0.07781966 0.6332786 0.01187539 0.00649014 0.01092573]\n [0.38430232 0.07781966 0.6332786 0.01187539 0.00649014 0.01092573]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAFAKwuhHi4jy/92k8fn37PXb/6b0K91U+HtjoOxf9DzzJu1c+7MPKvXfCRLy7ATs7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00134284 0.02769569 0.01428026]\n [ 0.12279795 -0.11425678 0.20895019]\n [ 0.00710584 0.00878837 0.21067728]\n [-0.0990065 -0.01200925 0.0028535 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxcpo5POK1r+UhpRSlIwBbJRLMowBdJRHQKqkjbi6xxF1fZQoaAZoCWgPQwggRZ25h4Tpv5SGlFKUaBVLMmgWR0CqpEk0aZQYdX2UKGgGaAloD0MII/jfSnbs57+UhpRSlGgVSzJoFkdAqqQLlcQiA3V9lChoBmgJaA9DCKIo0CfypOK/lIaUUpRoFUsyaBZHQKqjygHNX5p1fZQoaAZoCWgPQwiGx34WS5Hnv5SGlFKUaBVLMmgWR0CqpcUtZmqYdX2UKGgGaAloD0MIcv4mFCLg5b+UhpRSlGgVSzJoFkdAqqWAo1DSgHV9lChoBmgJaA9DCBL27SQi/N6/lIaUUpRoFUsyaBZHQKqlQmShakh1fZQoaAZoCWgPQwjo2az6XG3sv5SGlFKUaBVLMmgWR0CqpQDhUBGQdX2UKGgGaAloD0MIL6TDQxg/6r+UhpRSlGgVSzJoFkdAqqcCY/mknHV9lChoBmgJaA9DCJpBfGDHf+O/lIaUUpRoFUsyaBZHQKqmvciW3Sd1fZQoaAZoCWgPQwjAPjp15bPTv5SGlFKUaBVLMmgWR0Cqpn9wWFewdX2UKGgGaAloD0MIaLPqc7UV37+UhpRSlGgVSzJoFkdAqqY93pwCKnV9lChoBmgJaA9DCEIIyJdQwdi/lIaUUpRoFUsyaBZHQKqoRIwM6R11fZQoaAZoCWgPQwiFJ/T6k/juv5SGlFKUaBVLMmgWR0Cqp///vOQhdX2UKGgGaAloD0MIjsni/iNT4r+UhpRSlGgVSzJoFkdAqqfBy2hIv3V9lChoBmgJaA9DCEgzFk1nJ9O/lIaUUpRoFUsyaBZHQKqngFC9h7V1fZQoaAZoCWgPQwjGTQ00n3Pev5SGlFKUaBVLMmgWR0CqqYaCUX54dX2UKGgGaAloD0MItTaN7bWg1L+UhpRSlGgVSzJoFkdAqqlB91EE1XV9lChoBmgJaA9DCAd8fhghPNu/lIaUUpRoFUsyaBZHQKqpA9V3ljp1fZQoaAZoCWgPQwigbqDAO/ndv5SGlFKUaBVLMmgWR0CqqMJT/ACXdX2UKGgGaAloD0MI1J0nnrMF2L+UhpRSlGgVSzJoFkdAqqq9ipeeF3V9lChoBmgJaA9DCH7IW65+bNq/lIaUUpRoFUsyaBZHQKqqebH6uW91fZQoaAZoCWgPQwgtP3CVJxDdv5SGlFKUaBVLMmgWR0CqqjwfQrtmdX2UKGgGaAloD0MIYw6Cjla13L+UhpRSlGgVSzJoFkdAqqn7bSJCSnV9lChoBmgJaA9DCOsbmNwost6/lIaUUpRoFUsyaBZHQKqr9jIaLn91fZQoaAZoCWgPQwjumLoru2DUv5SGlFKUaBVLMmgWR0Cqq7JhF3INdX2UKGgGaAloD0MIFmwjnuxm27+UhpRSlGgVSzJoFkdAqqt2IuXeFnV9lChoBmgJaA9DCJ3WbVD7rcm/lIaUUpRoFUsyaBZHQKqrNi704BF1fZQoaAZoCWgPQwi5Us+CUN7kv5SGlFKUaBVLMmgWR0CqrV5ElVtGdX2UKGgGaAloD0MIHCPZI9SM6b+UhpRSlGgVSzJoFkdAqq0aMYMvy3V9lChoBmgJaA9DCJt2Mc10L+S/lIaUUpRoFUsyaBZHQKqs2+8oQWh1fZQoaAZoCWgPQwhQpzy6ERbav5SGlFKUaBVLMmgWR0CqrJpjlPrOdX2UKGgGaAloD0MIx7ji4qjc7L+UhpRSlGgVSzJoFkdAqq6Qc94eLnV9lChoBmgJaA9DCNEINq5/1+m/lIaUUpRoFUsyaBZHQKquS9DhLoR1fZQoaAZoCWgPQwgaUG9GzVfQv5SGlFKUaBVLMmgWR0Cqrg2UB4lhdX2UKGgGaAloD0MIPYIbKVuk4b+UhpRSlGgVSzJoFkdAqq3MIcBEKHV9lChoBmgJaA9DCFVLOsrBbNq/lIaUUpRoFUsyaBZHQKqvw6reZXx1fZQoaAZoCWgPQwgD6WLTSiHiv5SGlFKUaBVLMmgWR0Cqr38vmHQAdX2UKGgGaAloD0MIEOz4LxAE3r+UhpRSlGgVSzJoFkdAqq9A2hqTKXV9lChoBmgJaA9DCNUGJ6JfW9K/lIaUUpRoFUsyaBZHQKqu/003wTd1fZQoaAZoCWgPQwjhYkUNpmHhv5SGlFKUaBVLMmgWR0CqsPsIE8q4dX2UKGgGaAloD0MI1JgQc0lV5L+UhpRSlGgVSzJoFkdAqrC2i5/b03V9lChoBmgJaA9DCGR2Fr1TAdy/lIaUUpRoFUsyaBZHQKqweFCb+cZ1fZQoaAZoCWgPQwivfQG9cGfqv5SGlFKUaBVLMmgWR0CqsDvsRg7YdX2UKGgGaAloD0MItd5vtOOG3r+UhpRSlGgVSzJoFkdAqrJZ3aBZp3V9lChoBmgJaA9DCNWytb5IaOO/lIaUUpRoFUsyaBZHQKqyFZvkzXV1fZQoaAZoCWgPQwgCLsiW5evdv5SGlFKUaBVLMmgWR0Cqsdc4gieNdX2UKGgGaAloD0MIxCPx8nSu27+UhpRSlGgVSzJoFkdAqrGVi6QNkXV9lChoBmgJaA9DCAnekEYFzuC/lIaUUpRoFUsyaBZHQKqziExIre91fZQoaAZoCWgPQwi8ytqmeNzov5SGlFKUaBVLMmgWR0Cqs0PxYq5LdX2UKGgGaAloD0MIfvylRX2S4r+UhpRSlGgVSzJoFkdAqrMF10T103V9lChoBmgJaA9DCDYiGAeXjtK/lIaUUpRoFUsyaBZHQKqyxiLEUCd1fZQoaAZoCWgPQwiK6NfWT//wv5SGlFKUaBVLMmgWR0CqtMM+eOGTdX2UKGgGaAloD0MI3UHsTKHz8L+UhpRSlGgVSzJoFkdAqrR+zjWCmXV9lChoBmgJaA9DCC7jpgaaz+C/lIaUUpRoFUsyaBZHQKq0QKVII4V1fZQoaAZoCWgPQwhuiVxwBn/fv5SGlFKUaBVLMmgWR0Cqs/8wYcebdX2UKGgGaAloD0MIINRFCmXh2L+UhpRSlGgVSzJoFkdAqrYDhJiAlXV9lChoBmgJaA9DCHl2+daHdeG/lIaUUpRoFUsyaBZHQKq1vvZyuIR1fZQoaAZoCWgPQwioiqn0E07lv5SGlFKUaBVLMmgWR0CqtYDB/I8ydX2UKGgGaAloD0MInyKHiJtT47+UhpRSlGgVSzJoFkdAqrU/OGCZnnV9lChoBmgJaA9DCDOHpBZKpuC/lIaUUpRoFUsyaBZHQKq3OdHUc4p1fZQoaAZoCWgPQwiitaLNcW7nv5SGlFKUaBVLMmgWR0CqtvVhLGrCdX2UKGgGaAloD0MIAJF++zpw5b+UhpRSlGgVSzJoFkdAqra3ZElVtHV9lChoBmgJaA9DCAWm07oN6ue/lIaUUpRoFUsyaBZHQKq2dgBLf1p1fZQoaAZoCWgPQwiXcr7Ye3Hnv5SGlFKUaBVLMmgWR0CquMZBcAzYdX2UKGgGaAloD0MIHjUmxFxSz7+UhpRSlGgVSzJoFkdAqriCZ4Oc2HV9lChoBmgJaA9DCOI9B5Yj5OG/lIaUUpRoFUsyaBZHQKq4RQVKwpx1fZQoaAZoCWgPQwgcs+xJYHPWv5SGlFKUaBVLMmgWR0CquARArxy5dX2UKGgGaAloD0MIB+v/HObL1b+UhpRSlGgVSzJoFkdAqrqrVJ+UhXV9lChoBmgJaA9DCIBmEB/Y8dq/lIaUUpRoFUsyaBZHQKq6Z59mYjV1fZQoaAZoCWgPQwgboDTUKCTjv5SGlFKUaBVLMmgWR0CquiotL+PzdX2UKGgGaAloD0MIflcE/1tJ6b+UhpRSlGgVSzJoFkdAqrnpoh6jWXV9lChoBmgJaA9DCHgN+tLbH/C/lIaUUpRoFUsyaBZHQKq8qdaMaS91fZQoaAZoCWgPQwjeyafHtozgv5SGlFKUaBVLMmgWR0CqvGYAjps5dX2UKGgGaAloD0MIjSWsjbET3b+UhpRSlGgVSzJoFkdAqrwocPvrnnV9lChoBmgJaA9DCFRW0/VE1+2/lIaUUpRoFUsyaBZHQKq757F85S51fZQoaAZoCWgPQwhgHjLlQ1DTv5SGlFKUaBVLMmgWR0CqvskmICU5dX2UKGgGaAloD0MIlBKCVfXy2r+UhpRSlGgVSzJoFkdAqr6F83Mpw3V9lChoBmgJaA9DCHDNHf0vV+O/lIaUUpRoFUsyaBZHQKq+SJrLyMF1fZQoaAZoCWgPQwijsfZ3tsfmv5SGlFKUaBVLMmgWR0CqvgfrKNhmdX2UKGgGaAloD0MIqJAr9SwI27+UhpRSlGgVSzJoFkdAqsDturIYFnV9lChoBmgJaA9DCNXMWgpI++q/lIaUUpRoFUsyaBZHQKrAqneizs11fZQoaAZoCWgPQwhjJ7wEp77lv5SGlFKUaBVLMmgWR0CqwG3AuZkTdX2UKGgGaAloD0MIOQ68Wu5M5r+UhpRSlGgVSzJoFkdAqsAt3Ux20XV9lChoBmgJaA9DCHFWRE30OfC/lIaUUpRoFUsyaBZHQKrDLhqCYkV1fZQoaAZoCWgPQwgSTDWzlgLnv5SGlFKUaBVLMmgWR0CqwuqYZ2pydX2UKGgGaAloD0MIh/2eWKdK4r+UhpRSlGgVSzJoFkdAqsKtUQ04znV9lChoBmgJaA9DCDiDv1/MltK/lIaUUpRoFUsyaBZHQKrCbLUTcqR1fZQoaAZoCWgPQwiYaftXVprZv5SGlFKUaBVLMmgWR0CqxQDkuHvddX2UKGgGaAloD0MIio7k8h9S8b+UhpRSlGgVSzJoFkdAqsS8YZVGTnV9lChoBmgJaA9DCHdoWIy6VuG/lIaUUpRoFUsyaBZHQKrEfiYsunN1fZQoaAZoCWgPQwgVGR2QhH3Wv5SGlFKUaBVLMmgWR0CqxDyqMm4RdX2UKGgGaAloD0MI1hpK7UU05b+UhpRSlGgVSzJoFkdAqsZAOFxn4HV9lChoBmgJaA9DCPa2mQrxSNa/lIaUUpRoFUsyaBZHQKrF+5xzaK11fZQoaAZoCWgPQwjI6lbPSe/Xv5SGlFKUaBVLMmgWR0Cqxb1QZXMhdX2UKGgGaAloD0MIWkqWk1D667+UhpRSlGgVSzJoFkdAqsV70g8r7XV9lChoBmgJaA9DCCZTBaOSuu6/lIaUUpRoFUsyaBZHQKrHdyvLX+V1fZQoaAZoCWgPQwjlCu9yEd/fv5SGlFKUaBVLMmgWR0CqxzKOcUdrdX2UKGgGaAloD0MI+N7foL167b+UhpRSlGgVSzJoFkdAqsb0TviLl3V9lChoBmgJaA9DCFg4SfPHtNG/lIaUUpRoFUsyaBZHQKrGstbs4T91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}