neatbullshit commited on
Commit
d395acf
1 Parent(s): c8a9b04

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -5.78 +/- 1.35
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -3.31 +/- 1.49
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:78b4ef16e092222f8735ed21ca52b93f961623fbadd1bee336f2ae408d21b6d3
3
- size 108075
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56f1d1cf3526538f69ac8e2f368a90b9f96fb4be4e97e1f656f48026b3bf290b
3
+ size 108089
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fef0ca2c700>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7fef0ca22d40>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -19,12 +19,12 @@
19
  "weight_decay": 0
20
  }
21
  },
22
- "num_timesteps": 1000000,
23
  "_total_timesteps": 1000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
- "start_time": 1685140598345463921,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
@@ -33,36 +33,36 @@
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAJZXrPleCKbzJ9hM/JZXrPleCKbzJ9hM/JZXrPleCKbzJ9hM/JZXrPleCKbzJ9hM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+q65v1Egsb8NQsO/fJwPPx9a9r6ia4W/pGcgP0MUAD8ym9s/hhehvxl/tD/6O8o/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAlles+V4IpvMn2Ez//jJ87BN44u2C28zslles+V4IpvMn2Ez//jJ87BN44u2C28zslles+V4IpvMn2Ez//jJ87BN44u2C28zslles+V4IpvMn2Ez//jJ87BN44u2C28zuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
- "achieved_goal": "[[ 0.46012226 -0.01034602 0.5779844 ]\n [ 0.46012226 -0.01034602 0.5779844 ]\n [ 0.46012226 -0.01034602 0.5779844 ]\n [ 0.46012226 -0.01034602 0.5779844 ]]",
38
- "desired_goal": "[[-1.4506524 -1.3837987 -1.5254532 ]\n [ 0.5609815 -0.48115632 -1.0423472 ]\n [ 0.62658143 0.50030917 1.7156737 ]\n [-1.2585304 1.4101287 1.5799553 ]]",
39
- "observation": "[[ 0.46012226 -0.01034602 0.5779844 0.0048691 -0.00282085 0.00743751]\n [ 0.46012226 -0.01034602 0.5779844 0.0048691 -0.00282085 0.00743751]\n [ 0.46012226 -0.01034602 0.5779844 0.0048691 -0.00282085 0.00743751]\n [ 0.46012226 -0.01034602 0.5779844 0.0048691 -0.00282085 0.00743751]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
43
- ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjnjMPPMxmb0s5S09i5LyPQUqFz4B8ys+i435u2Va573GjWc+YmiBvc+m5z1vqGU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
- "desired_goal": "[[ 0.02495983 -0.0748023 0.04245488]\n [ 0.11844357 0.14762123 0.16791917]\n [-0.00761575 -0.11296538 0.22612676]\n [-0.06318738 0.11311113 0.22427534]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
53
  "use_sde": false,
54
  "sde_sample_freq": -1,
55
- "_current_progress_remaining": 0.0,
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdA0zNJ5ICsCUhpRSlIwBbJRLMowBdJRHQKj+KkC3gDR1fZQoaAZoCWgPQwgz+zxGeYYSwJSGlFKUaBVLMmgWR0Co/fE6T4cndX2UKGgGaAloD0MIFHZR9MBnFsCUhpRSlGgVSzJoFkdAqP2vnuAqeHV9lChoBmgJaA9DCD2cwHRaJxHAlIaUUpRoFUsyaBZHQKj9a32mHgx1fZQoaAZoCWgPQwhgx3+BIMAXwJSGlFKUaBVLMmgWR0Co/xfoaDPGdX2UKGgGaAloD0MIPbfQlQiUFcCUhpRSlGgVSzJoFkdAqP7e5lOGkHV9lChoBmgJaA9DCGpN845TNBfAlIaUUpRoFUsyaBZHQKj+nULlV951fZQoaAZoCWgPQwjlszwP7k4IwJSGlFKUaBVLMmgWR0Co/lkwevIPdX2UKGgGaAloD0MIHOviNhpwE8CUhpRSlGgVSzJoFkdAqQAL9bX6InV9lChoBmgJaA9DCNWXpZ2aGxTAlIaUUpRoFUsyaBZHQKj/0vHLidd1fZQoaAZoCWgPQwgydy0hH9QSwJSGlFKUaBVLMmgWR0Co/5FbeMyadX2UKGgGaAloD0MIBmfw94uJFMCUhpRSlGgVSzJoFkdAqP9NRpDeCXV9lChoBmgJaA9DCFG7XwX4bhHAlIaUUpRoFUsyaBZHQKkA+DnvDxd1fZQoaAZoCWgPQwjpJ5zdWpYSwJSGlFKUaBVLMmgWR0CpAL80k4WDdX2UKGgGaAloD0MIvQFmvoMfGMCUhpRSlGgVSzJoFkdAqQB9zfaYeHV9lChoBmgJaA9DCCY3iqw19BbAlIaUUpRoFUsyaBZHQKkAObPQfIV1fZQoaAZoCWgPQwiCxHb3AN0YwJSGlFKUaBVLMmgWR0CpAeo/A0sOdX2UKGgGaAloD0MIzse1oWJsGMCUhpRSlGgVSzJoFkdAqQGxRwZOz3V9lChoBmgJaA9DCOOKi6NyExfAlIaUUpRoFUsyaBZHQKkBb642CNF1fZQoaAZoCWgPQwh6HXHIBlINwJSGlFKUaBVLMmgWR0CpASvSUkfLdX2UKGgGaAloD0MILo81I4MsFMCUhpRSlGgVSzJoFkdAqQLdBWxQi3V9lChoBmgJaA9DCHugFRiyuhXAlIaUUpRoFUsyaBZHQKkCpB55Z8t1fZQoaAZoCWgPQwgTJ/c7FHUUwJSGlFKUaBVLMmgWR0CpAmKPwNLEdX2UKGgGaAloD0MIyAp+G2JMFMCUhpRSlGgVSzJoFkdAqQIee18b73V9lChoBmgJaA9DCLITXoJTDxfAlIaUUpRoFUsyaBZHQKkDzD+irT91fZQoaAZoCWgPQwg34sluZsQYwJSGlFKUaBVLMmgWR0CpA5ONo8ISdX2UKGgGaAloD0MIKHy2Dg5GEcCUhpRSlGgVSzJoFkdAqQNSErXlKnV9lChoBmgJaA9DCJs6j4r/axbAlIaUUpRoFUsyaBZHQKkDDfXwsoV1fZQoaAZoCWgPQwhFSrN5HOYQwJSGlFKUaBVLMmgWR0CpBMRKHwgDdX2UKGgGaAloD0MIbAiOy7g5FcCUhpRSlGgVSzJoFkdAqQSLQ5WBBnV9lChoBmgJaA9DCInuWddoaRDAlIaUUpRoFUsyaBZHQKkESauOjqR1fZQoaAZoCWgPQwie6pCb4fYSwJSGlFKUaBVLMmgWR0CpBAWJzkp7dX2UKGgGaAloD0MIHCPZI9Q8FMCUhpRSlGgVSzJoFkdAqQWzH2h7FHV9lChoBmgJaA9DCJbqAl5miBbAlIaUUpRoFUsyaBZHQKkFehM8HOd1fZQoaAZoCWgPQwiNCwdCsnAUwJSGlFKUaBVLMmgWR0CpBTiSA6MjdX2UKGgGaAloD0MI+64I/rdSGMCUhpRSlGgVSzJoFkdAqQT0eZG8VnV9lChoBmgJaA9DCOBNt+wQ/xHAlIaUUpRoFUsyaBZHQKkGnv/io891fZQoaAZoCWgPQwgO2NXkKXsUwJSGlFKUaBVLMmgWR0CpBmXw1BMSdX2UKGgGaAloD0MIiGh0B7HjHMCUhpRSlGgVSzJoFkdAqQYkZDRc/3V9lChoBmgJaA9DCPnX8sr19hTAlIaUUpRoFUsyaBZHQKkF4DHOryV1fZQoaAZoCWgPQwi2EU92M3MXwJSGlFKUaBVLMmgWR0CpB4tq59VndX2UKGgGaAloD0MIWI0lrI0xGsCUhpRSlGgVSzJoFkdAqQdStxMnJHV9lChoBmgJaA9DCFlt/l91xBPAlIaUUpRoFUsyaBZHQKkHEdMj/uN1fZQoaAZoCWgPQwj8j0yHTt8YwJSGlFKUaBVLMmgWR0CpBs6j3225dX2UKGgGaAloD0MIuynltRIKGsCUhpRSlGgVSzJoFkdAqQkTSkTHsHV9lChoBmgJaA9DCHXniedscRnAlIaUUpRoFUsyaBZHQKkI2ujh1kl1fZQoaAZoCWgPQwiD3bBtURYZwJSGlFKUaBVLMmgWR0CpCJodMj/udX2UKGgGaAloD0MIS1gbYycMFsCUhpRSlGgVSzJoFkdAqQhYZ2pyZXV9lChoBmgJaA9DCOHRxhFrgRfAlIaUUpRoFUsyaBZHQKkKn60IC2d1fZQoaAZoCWgPQwhi2cwhqbUYwJSGlFKUaBVLMmgWR0CpCmfDDTBqdX2UKGgGaAloD0MI1T4djxnIFsCUhpRSlGgVSzJoFkdAqQomxKQJX3V9lChoBmgJaA9DCPPGSWHeIxrAlIaUUpRoFUsyaBZHQKkJ4yWzF/B1fZQoaAZoCWgPQwj1FDlE3PwXwJSGlFKUaBVLMmgWR0CpDCBjFyaNdX2UKGgGaAloD0MI2LYos0FGFcCUhpRSlGgVSzJoFkdAqQvn51vETHV9lChoBmgJaA9DCAiQoWMHVRfAlIaUUpRoFUsyaBZHQKkLptMPBi11fZQoaAZoCWgPQwjOFhBaD78YwJSGlFKUaBVLMmgWR0CpC2MZ5zHTdX2UKGgGaAloD0MI+Z/83Tv6F8CUhpRSlGgVSzJoFkdAqQ24/gR9PXV9lChoBmgJaA9DCHwqpz0lxxDAlIaUUpRoFUsyaBZHQKkNgZUDMeR1fZQoaAZoCWgPQwj12QHXFSMYwJSGlFKUaBVLMmgWR0CpDUCl7+kydX2UKGgGaAloD0MILubnhqZsGcCUhpRSlGgVSzJoFkdAqQz9Yp2ECnV9lChoBmgJaA9DCLYTJSGRxh3AlIaUUpRoFUsyaBZHQKkPYc3EQ5F1fZQoaAZoCWgPQwghIjXtYroXwJSGlFKUaBVLMmgWR0CpDym4AjptdX2UKGgGaAloD0MIKsdkcf9BGMCUhpRSlGgVSzJoFkdAqQ7pAlfJFXV9lChoBmgJaA9DCHtOet/4ihPAlIaUUpRoFUsyaBZHQKkOpZ7HAAR1fZQoaAZoCWgPQwivCz84n8oZwJSGlFKUaBVLMmgWR0CpEQD9wWFfdX2UKGgGaAloD0MIjSWsjbGDGcCUhpRSlGgVSzJoFkdAqRDIuscQy3V9lChoBmgJaA9DCG5rC89LhRzAlIaUUpRoFUsyaBZHQKkQiN1hb4d1fZQoaAZoCWgPQwgj2Lj+Xf8awJSGlFKUaBVLMmgWR0CpEEW0qpcYdX2UKGgGaAloD0MI8parH5vEGcCUhpRSlGgVSzJoFkdAqRKoj4YaYXV9lChoBmgJaA9DCHibN04KwxHAlIaUUpRoFUsyaBZHQKkScFlCkXV1fZQoaAZoCWgPQwiILxNFSP0cwJSGlFKUaBVLMmgWR0CpEi/QSi/PdX2UKGgGaAloD0MIjXvzGyaqGsCUhpRSlGgVSzJoFkdAqRHsvIwM6XV9lChoBmgJaA9DCE+uKZDZeRfAlIaUUpRoFUsyaBZHQKkT53Qla8p1fZQoaAZoCWgPQwhaY9AJodMbwJSGlFKUaBVLMmgWR0CpE650Syt3dX2UKGgGaAloD0MICcIVUKj3GsCUhpRSlGgVSzJoFkdAqRNs43m3fHV9lChoBmgJaA9DCIPab+1EKRbAlIaUUpRoFUsyaBZHQKkTKNMGorF1fZQoaAZoCWgPQwghkEsceaAXwJSGlFKUaBVLMmgWR0CpFNPW6K+BdX2UKGgGaAloD0MI4V8EjZmkGMCUhpRSlGgVSzJoFkdAqRSa2Yv38HV9lChoBmgJaA9DCMCw/Pm2YBfAlIaUUpRoFUsyaBZHQKkUWVC5Vfh1fZQoaAZoCWgPQwjkEHFzKnkXwJSGlFKUaBVLMmgWR0CpFBWHk92YdX2UKGgGaAloD0MI31FjQsyVGMCUhpRSlGgVSzJoFkdAqRXZrpJPInV9lChoBmgJaA9DCOzCD86nfhfAlIaUUpRoFUsyaBZHQKkVoM+/xlR1fZQoaAZoCWgPQwiP5PIf0t8YwJSGlFKUaBVLMmgWR0CpFV9Qfp2VdX2UKGgGaAloD0MI85ApH4L6GsCUhpRSlGgVSzJoFkdAqRUbOiWVvHV9lChoBmgJaA9DCC82rRQCWRzAlIaUUpRoFUsyaBZHQKkWxvrnkkt1fZQoaAZoCWgPQwji5elcUVodwJSGlFKUaBVLMmgWR0CpFo33QD3edX2UKGgGaAloD0MIIZBLHHmwGcCUhpRSlGgVSzJoFkdAqRZMV+I/JXV9lChoBmgJaA9DCF+Wdmou1xzAlIaUUpRoFUsyaBZHQKkWCDIzWPN1fZQoaAZoCWgPQwgWpBmLpiMTwJSGlFKUaBVLMmgWR0CpF8KDTSb6dX2UKGgGaAloD0MIi/uPTIeuFcCUhpRSlGgVSzJoFkdAqReJt78ejnV9lChoBmgJaA9DCJbtQ95yTSDAlIaUUpRoFUsyaBZHQKkXSC4Bmwt1fZQoaAZoCWgPQwgTmbnA5QEgwJSGlFKUaBVLMmgWR0CpFwQRwqAjdX2UKGgGaAloD0MInZ0MjpI3GMCUhpRSlGgVSzJoFkdAqRizc2zfJnV9lChoBmgJaA9DCCVa8nhafhrAlIaUUpRoFUsyaBZHQKkYeth/iHZ1fZQoaAZoCWgPQwh7FK5H4UoZwJSGlFKUaBVLMmgWR0CpGDmgi/widX2UKGgGaAloD0MIC9XNxd9WGsCUhpRSlGgVSzJoFkdAqRf1iWmgrnV9lChoBmgJaA9DCLr4254gwRPAlIaUUpRoFUsyaBZHQKkZuV45cTt1fZQoaAZoCWgPQwhtUzwuqqUWwJSGlFKUaBVLMmgWR0CpGYBcZ9/jdX2UKGgGaAloD0MIEW+df7s8E8CUhpRSlGgVSzJoFkdAqRk/dO6/ZnV9lChoBmgJaA9DCNyeILHdXRfAlIaUUpRoFUsyaBZHQKkY+11nuiN1ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
- "_n_updates": 50000,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
  "gae_lambda": 1.0,
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd129aebac0>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fd129ae6300>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
19
  "weight_decay": 0
20
  }
21
  },
22
+ "num_timesteps": 437324,
23
  "_total_timesteps": 1000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
+ "start_time": 1685228663952012075,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
 
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATlCoP0yeuDxiifC+ddayP01URT9aBvU+L+W+P1+seD4A5Kg+21STPOdGhr/Dpq++lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMxfaPwEND76VfhC/FomqP6znvD/ZeMc/4hDVP3zw3T4C2ks/6awxP/QH3L/CuIq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABOUKg/TJ64PGKJ8L7FRjS+voNhvr3aHz511rI/TVRFP1oG9T4Thva9rBo7v+imAz4v5b4/X6x4PgDkqD48r2g+knCWP/PIXj/bVJM850aGv8Omr76I4L6+qfuXv0vFLj+UaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 1.3149507 0.02253642 -0.46979815]\n [ 1.3971697 0.7708176 0.47856408]\n [ 1.4913691 0.24284504 0.3298645 ]\n [ 0.0179848 -1.0490388 -0.34306917]]",
38
+ "desired_goal": "[[ 1.703833 -0.13969804 -0.5644315 ]\n [ 1.3323085 1.4758201 1.5583755 ]\n [ 1.6645777 0.43347538 0.7962953 ]\n [ 0.69404465 -1.7189927 -1.0837634 ]]",
39
+ "observation": "[[ 1.3149507 0.02253642 -0.46979815 -0.17605121 -0.22022912 0.15610786]\n [ 1.3971697 0.7708176 0.47856408 -0.12037291 -0.73087573 0.12856638]\n [ 1.4913691 0.24284504 0.3298645 0.22723097 1.1753104 0.87025374]\n [ 0.0179848 -1.0490388 -0.34306917 -0.3728068 -1.1873676 0.68269795]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAu32bvdVgm72APBA+BUIGPbGLCL6Xh3o+eA0PPsUpuL2tVsM99AvIPZUUZj0j1TQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.07592341 -0.07586829 0.14085579]\n [ 0.0327778 -0.13334538 0.24465786]\n [ 0.13969982 -0.08992342 0.09538016]\n [ 0.09767905 0.05617197 0.1765943 ]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
53
  "use_sde": false,
54
  "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.5626800000000001,
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbTfBN00f8r+UhpRSlIwBbJRLMowBdJRHQJOQirXDm8x1fZQoaAZoCWgPQwgH7dXHQz8AwJSGlFKUaBVLMmgWR0CTkBACW/rTdX2UKGgGaAloD0MI8nowKT5OGMCUhpRSlGgVSzJoFkdAk4+a7ZnL73V9lChoBmgJaA9DCNPbn4uGzPi/lIaUUpRoFUsyaBZHQJOPIpDu0C11fZQoaAZoCWgPQwiTGtoAbMD6v5SGlFKUaBVLMmgWR0CTkk7m+0w8dX2UKGgGaAloD0MISb2nctoTGsCUhpRSlGgVSzJoFkdAk5HUI9kjHHV9lChoBmgJaA9DCJT6srRT8xPAlIaUUpRoFUsyaBZHQJORXqhUR4B1fZQoaAZoCWgPQwiIhVrTvGP8v5SGlFKUaBVLMmgWR0CTkOZQpF1CdX2UKGgGaAloD0MI0A64rpjR/7+UhpRSlGgVSzJoFkdAk5QR8c+7lXV9lChoBmgJaA9DCFLuPsdHC/u/lIaUUpRoFUsyaBZHQJOTl2bG3nZ1fZQoaAZoCWgPQwjJdr6fGq/yv5SGlFKUaBVLMmgWR0CTkyH7gsK9dX2UKGgGaAloD0MISrVPx2OGAMCUhpRSlGgVSzJoFkdAk5KpvDP4VXV9lChoBmgJaA9DCNeEtMagk/6/lIaUUpRoFUsyaBZHQJOV38sMAm11fZQoaAZoCWgPQwhdGr/wSlLyv5SGlFKUaBVLMmgWR0CTlWUn5SFXdX2UKGgGaAloD0MIaf6Y1qYx/L+UhpRSlGgVSzJoFkdAk5Tv/io86nV9lChoBmgJaA9DCFKAKJgxdRPAlIaUUpRoFUsyaBZHQJOUd7IDHOt1fZQoaAZoCWgPQwhpNo/DYK4WwJSGlFKUaBVLMmgWR0CTl7X531SPdX2UKGgGaAloD0MIj3Ba8KIPAMCUhpRSlGgVSzJoFkdAk5c7d30PH3V9lChoBmgJaA9DCFTE6SRbfQHAlIaUUpRoFUsyaBZHQJOWxn+Q2dd1fZQoaAZoCWgPQwimK9hGPDkJwJSGlFKUaBVLMmgWR0CTlk63AmAtdX2UKGgGaAloD0MILPGAsil3GcCUhpRSlGgVSzJoFkdAk5l6eGwiaHV9lChoBmgJaA9DCF4R/G8lO/W/lIaUUpRoFUsyaBZHQJOY/4ubqhV1fZQoaAZoCWgPQwi/nq9ZLjsCwJSGlFKUaBVLMmgWR0CTmIoVEd/8dX2UKGgGaAloD0MI/3Vu2oxzGcCUhpRSlGgVSzJoFkdAk5gR4Y77sXV9lChoBmgJaA9DCMvbEU4LngDAlIaUUpRoFUsyaBZHQJOcEgfU4Jh1fZQoaAZoCWgPQwh1lIPZBJj8v5SGlFKUaBVLMmgWR0CTm5hH9WIXdX2UKGgGaAloD0MIBmfw94tZ/b+UhpRSlGgVSzJoFkdAk5sj6ab4J3V9lChoBmgJaA9DCNR+aydKYgjAlIaUUpRoFUsyaBZHQJOardFfAsV1fZQoaAZoCWgPQwgzMshdhAkMwJSGlFKUaBVLMmgWR0CTntZDiOvMdX2UKGgGaAloD0MIHCRE+YIW+7+UhpRSlGgVSzJoFkdAk55dFKCg9XV9lChoBmgJaA9DCF0xI7w9aBbAlIaUUpRoFUsyaBZHQJOd6vyLAHp1fZQoaAZoCWgPQwjScqCH2nYRwJSGlFKUaBVLMmgWR0CTnXOzY287dX2UKGgGaAloD0MI662BrRIs/L+UhpRSlGgVSzJoFkdAk6Gtuk1uSHV9lChoBmgJaA9DCB+5Nem25BnAlIaUUpRoFUsyaBZHQJOhM8mrsB11fZQoaAZoCWgPQwixaaUQyCUSwJSGlFKUaBVLMmgWR0CToL9GZuyedX2UKGgGaAloD0MIMiB7vfvDF8CUhpRSlGgVSzJoFkdAk6BHtrsSkHV9lChoBmgJaA9DCKshcY+lz/e/lIaUUpRoFUsyaBZHQJOkszqKP4p1fZQoaAZoCWgPQwjGNqlorP38v5SGlFKUaBVLMmgWR0CTpDo0ALiNdX2UKGgGaAloD0MIiSgmb4AJFsCUhpRSlGgVSzJoFkdAk6PF+AmReXV9lChoBmgJaA9DCPNYMzLIjRbAlIaUUpRoFUsyaBZHQJOjTtOVPep1fZQoaAZoCWgPQwhDke7nFMQWwJSGlFKUaBVLMmgWR0CTp65+6RQrdX2UKGgGaAloD0MI18IstHNaDcCUhpRSlGgVSzJoFkdAk6c3solUqHV9lChoBmgJaA9DCDj1geSdYwDAlIaUUpRoFUsyaBZHQJOmxQcghbJ1fZQoaAZoCWgPQwhcBTHQtU8OwJSGlFKUaBVLMmgWR0CTpk45cTrWdX2UKGgGaAloD0MIk6rtJvhmFcCUhpRSlGgVSzJoFkdAk6q7Pt2LYXV9lChoBmgJaA9DCGJNZVHYdRfAlIaUUpRoFUsyaBZHQJOqQu27Wd51fZQoaAZoCWgPQwj/B1irds0PwJSGlFKUaBVLMmgWR0CTqdAo5PuYdX2UKGgGaAloD0MIcJUnEHaK+7+UhpRSlGgVSzJoFkdAk6lZgCwKSnV9lChoBmgJaA9DCDW3QliNJf6/lIaUUpRoFUsyaBZHQJOttPXTVlR1fZQoaAZoCWgPQwjX+bfLfj0MwJSGlFKUaBVLMmgWR0CTrTt03fhudX2UKGgGaAloD0MIFk1nJ4Oj+r+UhpRSlGgVSzJoFkdAk6zHJT2nKnV9lChoBmgJaA9DCI3xYfay7QTAlIaUUpRoFUsyaBZHQJOsUYDTz/Z1fZQoaAZoCWgPQwhnYORlTQwCwJSGlFKUaBVLMmgWR0CTsI4BV+7UdX2UKGgGaAloD0MIcZAQ5QvaCMCUhpRSlGgVSzJoFkdAk7ATFAE+xHV9lChoBmgJaA9DCPJ376gxYQrAlIaUUpRoFUsyaBZHQJOvncTJyQx1fZQoaAZoCWgPQwh6OIHptC4YwJSGlFKUaBVLMmgWR0CTryVjqfOEdX2UKGgGaAloD0MIxedOsP/6+r+UhpRSlGgVSzJoFkdAk7JDdP+GXXV9lChoBmgJaA9DCP9BJEOObQzAlIaUUpRoFUsyaBZHQJOxyG47Rv51fZQoaAZoCWgPQwiqKck6HD0AwJSGlFKUaBVLMmgWR0CTsVL127nQdX2UKGgGaAloD0MI7fMY5ZmXD8CUhpRSlGgVSzJoFkdAk7DafJ3gUHV9lChoBmgJaA9DCBcNGY9Syfe/lIaUUpRoFUsyaBZHQJO0HOC5Etx1fZQoaAZoCWgPQwiT4Xg+A2oHwJSGlFKUaBVLMmgWR0CTs6H3lCC0dX2UKGgGaAloD0MIeo1donqrFcCUhpRSlGgVSzJoFkdAk7Msj7hvSHV9lChoBmgJaA9DCAmLijidFBbAlIaUUpRoFUsyaBZHQJOytCY1He91fZQoaAZoCWgPQwiaeAd40qIBwJSGlFKUaBVLMmgWR0CTteDdxhlUdX2UKGgGaAloD0MIR5OLMbD+FsCUhpRSlGgVSzJoFkdAk7Vl6u4gBHV9lChoBmgJaA9DCBkfZi/brgPAlIaUUpRoFUsyaBZHQJO08PtlZox1fZQoaAZoCWgPQwhZNJ2dDA4DwJSGlFKUaBVLMmgWR0CTtHihFmWddX2UKGgGaAloD0MIkgN2NXmqC8CUhpRSlGgVSzJoFkdAk7eZFb3XZ3V9lChoBmgJaA9DCMcNv5tuWQ7AlIaUUpRoFUsyaBZHQJO3HivPkaN1fZQoaAZoCWgPQwhKfy+FBy0QwJSGlFKUaBVLMmgWR0CTtqi1iONpdX2UKGgGaAloD0MIsHWpEfrZE8CUhpRSlGgVSzJoFkdAk7Yww0wai3V9lChoBmgJaA9DCB8vpMND+AnAlIaUUpRoFUsyaBZHQJO5YqoZQ551fZQoaAZoCWgPQwiW0F0SZwUTwJSGlFKUaBVLMmgWR0CTuOfNA1NydX2UKGgGaAloD0MItydIbHdP/b+UhpRSlGgVSzJoFkdAk7hyjL0SRXV9lChoBmgJaA9DCBLb3QN0vw/AlIaUUpRoFUsyaBZHQJO3+lFc6eZ1fZQoaAZoCWgPQwjNWZ9yTLYPwJSGlFKUaBVLMmgWR0CTuzaePJaJdX2UKGgGaAloD0MIEw69xcObBsCUhpRSlGgVSzJoFkdAk7q7nxJ/X3V9lChoBmgJaA9DCKEt51Jc1SDAlIaUUpRoFUsyaBZHQJO6RmPHT7V1fZQoaAZoCWgPQwhM3ZVdMDj4v5SGlFKUaBVLMmgWR0CTuc6FM7EHdX2UKGgGaAloD0MIsTbGTnj5E8CUhpRSlGgVSzJoFkdAk70R3iaRZHV9lChoBmgJaA9DCAXhCijUU/e/lIaUUpRoFUsyaBZHQJO8lvIfbK11fZQoaAZoCWgPQwi6Mqg2OJEbwJSGlFKUaBVLMmgWR0CTvCHPu5SWdX2UKGgGaAloD0MIwxA5fT0f/L+UhpRSlGgVSzJoFkdAk7upUtI07HV9lChoBmgJaA9DCB+5Nem2ZAfAlIaUUpRoFUsyaBZHQJO+9kYoAn51fZQoaAZoCWgPQwiMaaZ7nRQCwJSGlFKUaBVLMmgWR0CTvntgrpaBdX2UKGgGaAloD0MIkq8EUmL3CsCUhpRSlGgVSzJoFkdAk74GEbo8p3V9lChoBmgJaA9DCE/OUNzx5v+/lIaUUpRoFUsyaBZHQJO9jaoMrmR1fZQoaAZoCWgPQwggJuFCHjERwJSGlFKUaBVLMmgWR0CTwNvXbuc+dX2UKGgGaAloD0MIq3tkc9X8C8CUhpRSlGgVSzJoFkdAk8BhkiD/VHV9lChoBmgJaA9DCL6+1qVGqPq/lIaUUpRoFUsyaBZHQJO/7Cbc45t1fZQoaAZoCWgPQwjjN4WVCooQwJSGlFKUaBVLMmgWR0CTv3PHDJlrdX2UKGgGaAloD0MIOUVHcvkP/b+UhpRSlGgVSzJoFkdAk8Kv+n62v3V9lChoBmgJaA9DCMkeoWZINQzAlIaUUpRoFUsyaBZHQJPCNQCSzPd1fZQoaAZoCWgPQwj7XdiarXwHwJSGlFKUaBVLMmgWR0CTwb+m3vx6dX2UKGgGaAloD0MI7KF9rOBHEMCUhpRSlGgVSzJoFkdAk8FHT3IuG3V9lChoBmgJaA9DCMkBu5o8Jf6/lIaUUpRoFUsyaBZHQJPEh9w3o9t1fZQoaAZoCWgPQwijc36K4+ACwJSGlFKUaBVLMmgWR0CTxA1hb4ahdX2UKGgGaAloD0MIkIMSZtq+9b+UhpRSlGgVSzJoFkdAk8OX8baRIXV9lChoBmgJaA9DCHkDzHwHXw7AlIaUUpRoFUsyaBZHQJPDIBRyfcx1ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
+ "_n_updates": 21866,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b30b9905c5ec0abffb594df09aaff84328d07c614c8a5e0bd45577594910e8aa
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1c87a9a46ec7f737ecdb401867407c8c3be0d8595afedd0e60cdeb9acdc7c3b
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:159766759ca128fe957e737cb7dc4e1786bcab4e2a0c7add73e024b030f3d419
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7c68efbd24a16e3c6ff2f70f693f2f1aa9683a9e675cc08b7480597aaa05eac
3
  size 46014
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fef0ca2c700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fef0ca22d40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685140598345463921, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAJZXrPleCKbzJ9hM/JZXrPleCKbzJ9hM/JZXrPleCKbzJ9hM/JZXrPleCKbzJ9hM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+q65v1Egsb8NQsO/fJwPPx9a9r6ia4W/pGcgP0MUAD8ym9s/hhehvxl/tD/6O8o/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAlles+V4IpvMn2Ez//jJ87BN44u2C28zslles+V4IpvMn2Ez//jJ87BN44u2C28zslles+V4IpvMn2Ez//jJ87BN44u2C28zslles+V4IpvMn2Ez//jJ87BN44u2C28zuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.46012226 -0.01034602 0.5779844 ]\n [ 0.46012226 -0.01034602 0.5779844 ]\n [ 0.46012226 -0.01034602 0.5779844 ]\n [ 0.46012226 -0.01034602 0.5779844 ]]", "desired_goal": "[[-1.4506524 -1.3837987 -1.5254532 ]\n [ 0.5609815 -0.48115632 -1.0423472 ]\n [ 0.62658143 0.50030917 1.7156737 ]\n [-1.2585304 1.4101287 1.5799553 ]]", "observation": "[[ 0.46012226 -0.01034602 0.5779844 0.0048691 -0.00282085 0.00743751]\n [ 0.46012226 -0.01034602 0.5779844 0.0048691 -0.00282085 0.00743751]\n [ 0.46012226 -0.01034602 0.5779844 0.0048691 -0.00282085 0.00743751]\n [ 0.46012226 -0.01034602 0.5779844 0.0048691 -0.00282085 0.00743751]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjnjMPPMxmb0s5S09i5LyPQUqFz4B8ys+i435u2Va573GjWc+YmiBvc+m5z1vqGU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02495983 -0.0748023 0.04245488]\n [ 0.11844357 0.14762123 0.16791917]\n [-0.00761575 -0.11296538 0.22612676]\n [-0.06318738 0.11311113 0.22427534]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdA0zNJ5ICsCUhpRSlIwBbJRLMowBdJRHQKj+KkC3gDR1fZQoaAZoCWgPQwgz+zxGeYYSwJSGlFKUaBVLMmgWR0Co/fE6T4cndX2UKGgGaAloD0MIFHZR9MBnFsCUhpRSlGgVSzJoFkdAqP2vnuAqeHV9lChoBmgJaA9DCD2cwHRaJxHAlIaUUpRoFUsyaBZHQKj9a32mHgx1fZQoaAZoCWgPQwhgx3+BIMAXwJSGlFKUaBVLMmgWR0Co/xfoaDPGdX2UKGgGaAloD0MIPbfQlQiUFcCUhpRSlGgVSzJoFkdAqP7e5lOGkHV9lChoBmgJaA9DCGpN845TNBfAlIaUUpRoFUsyaBZHQKj+nULlV951fZQoaAZoCWgPQwjlszwP7k4IwJSGlFKUaBVLMmgWR0Co/lkwevIPdX2UKGgGaAloD0MIHOviNhpwE8CUhpRSlGgVSzJoFkdAqQAL9bX6InV9lChoBmgJaA9DCNWXpZ2aGxTAlIaUUpRoFUsyaBZHQKj/0vHLidd1fZQoaAZoCWgPQwgydy0hH9QSwJSGlFKUaBVLMmgWR0Co/5FbeMyadX2UKGgGaAloD0MIBmfw94uJFMCUhpRSlGgVSzJoFkdAqP9NRpDeCXV9lChoBmgJaA9DCFG7XwX4bhHAlIaUUpRoFUsyaBZHQKkA+DnvDxd1fZQoaAZoCWgPQwjpJ5zdWpYSwJSGlFKUaBVLMmgWR0CpAL80k4WDdX2UKGgGaAloD0MIvQFmvoMfGMCUhpRSlGgVSzJoFkdAqQB9zfaYeHV9lChoBmgJaA9DCCY3iqw19BbAlIaUUpRoFUsyaBZHQKkAObPQfIV1fZQoaAZoCWgPQwiCxHb3AN0YwJSGlFKUaBVLMmgWR0CpAeo/A0sOdX2UKGgGaAloD0MIzse1oWJsGMCUhpRSlGgVSzJoFkdAqQGxRwZOz3V9lChoBmgJaA9DCOOKi6NyExfAlIaUUpRoFUsyaBZHQKkBb642CNF1fZQoaAZoCWgPQwh6HXHIBlINwJSGlFKUaBVLMmgWR0CpASvSUkfLdX2UKGgGaAloD0MILo81I4MsFMCUhpRSlGgVSzJoFkdAqQLdBWxQi3V9lChoBmgJaA9DCHugFRiyuhXAlIaUUpRoFUsyaBZHQKkCpB55Z8t1fZQoaAZoCWgPQwgTJ/c7FHUUwJSGlFKUaBVLMmgWR0CpAmKPwNLEdX2UKGgGaAloD0MIyAp+G2JMFMCUhpRSlGgVSzJoFkdAqQIee18b73V9lChoBmgJaA9DCLITXoJTDxfAlIaUUpRoFUsyaBZHQKkDzD+irT91fZQoaAZoCWgPQwg34sluZsQYwJSGlFKUaBVLMmgWR0CpA5ONo8ISdX2UKGgGaAloD0MIKHy2Dg5GEcCUhpRSlGgVSzJoFkdAqQNSErXlKnV9lChoBmgJaA9DCJs6j4r/axbAlIaUUpRoFUsyaBZHQKkDDfXwsoV1fZQoaAZoCWgPQwhFSrN5HOYQwJSGlFKUaBVLMmgWR0CpBMRKHwgDdX2UKGgGaAloD0MIbAiOy7g5FcCUhpRSlGgVSzJoFkdAqQSLQ5WBBnV9lChoBmgJaA9DCInuWddoaRDAlIaUUpRoFUsyaBZHQKkESauOjqR1fZQoaAZoCWgPQwie6pCb4fYSwJSGlFKUaBVLMmgWR0CpBAWJzkp7dX2UKGgGaAloD0MIHCPZI9Q8FMCUhpRSlGgVSzJoFkdAqQWzH2h7FHV9lChoBmgJaA9DCJbqAl5miBbAlIaUUpRoFUsyaBZHQKkFehM8HOd1fZQoaAZoCWgPQwiNCwdCsnAUwJSGlFKUaBVLMmgWR0CpBTiSA6MjdX2UKGgGaAloD0MI+64I/rdSGMCUhpRSlGgVSzJoFkdAqQT0eZG8VnV9lChoBmgJaA9DCOBNt+wQ/xHAlIaUUpRoFUsyaBZHQKkGnv/io891fZQoaAZoCWgPQwgO2NXkKXsUwJSGlFKUaBVLMmgWR0CpBmXw1BMSdX2UKGgGaAloD0MIiGh0B7HjHMCUhpRSlGgVSzJoFkdAqQYkZDRc/3V9lChoBmgJaA9DCPnX8sr19hTAlIaUUpRoFUsyaBZHQKkF4DHOryV1fZQoaAZoCWgPQwi2EU92M3MXwJSGlFKUaBVLMmgWR0CpB4tq59VndX2UKGgGaAloD0MIWI0lrI0xGsCUhpRSlGgVSzJoFkdAqQdStxMnJHV9lChoBmgJaA9DCFlt/l91xBPAlIaUUpRoFUsyaBZHQKkHEdMj/uN1fZQoaAZoCWgPQwj8j0yHTt8YwJSGlFKUaBVLMmgWR0CpBs6j3225dX2UKGgGaAloD0MIuynltRIKGsCUhpRSlGgVSzJoFkdAqQkTSkTHsHV9lChoBmgJaA9DCHXniedscRnAlIaUUpRoFUsyaBZHQKkI2ujh1kl1fZQoaAZoCWgPQwiD3bBtURYZwJSGlFKUaBVLMmgWR0CpCJodMj/udX2UKGgGaAloD0MIS1gbYycMFsCUhpRSlGgVSzJoFkdAqQhYZ2pyZXV9lChoBmgJaA9DCOHRxhFrgRfAlIaUUpRoFUsyaBZHQKkKn60IC2d1fZQoaAZoCWgPQwhi2cwhqbUYwJSGlFKUaBVLMmgWR0CpCmfDDTBqdX2UKGgGaAloD0MI1T4djxnIFsCUhpRSlGgVSzJoFkdAqQomxKQJX3V9lChoBmgJaA9DCPPGSWHeIxrAlIaUUpRoFUsyaBZHQKkJ4yWzF/B1fZQoaAZoCWgPQwj1FDlE3PwXwJSGlFKUaBVLMmgWR0CpDCBjFyaNdX2UKGgGaAloD0MI2LYos0FGFcCUhpRSlGgVSzJoFkdAqQvn51vETHV9lChoBmgJaA9DCAiQoWMHVRfAlIaUUpRoFUsyaBZHQKkLptMPBi11fZQoaAZoCWgPQwjOFhBaD78YwJSGlFKUaBVLMmgWR0CpC2MZ5zHTdX2UKGgGaAloD0MI+Z/83Tv6F8CUhpRSlGgVSzJoFkdAqQ24/gR9PXV9lChoBmgJaA9DCHwqpz0lxxDAlIaUUpRoFUsyaBZHQKkNgZUDMeR1fZQoaAZoCWgPQwj12QHXFSMYwJSGlFKUaBVLMmgWR0CpDUCl7+kydX2UKGgGaAloD0MILubnhqZsGcCUhpRSlGgVSzJoFkdAqQz9Yp2ECnV9lChoBmgJaA9DCLYTJSGRxh3AlIaUUpRoFUsyaBZHQKkPYc3EQ5F1fZQoaAZoCWgPQwghIjXtYroXwJSGlFKUaBVLMmgWR0CpDym4AjptdX2UKGgGaAloD0MIKsdkcf9BGMCUhpRSlGgVSzJoFkdAqQ7pAlfJFXV9lChoBmgJaA9DCHtOet/4ihPAlIaUUpRoFUsyaBZHQKkOpZ7HAAR1fZQoaAZoCWgPQwivCz84n8oZwJSGlFKUaBVLMmgWR0CpEQD9wWFfdX2UKGgGaAloD0MIjSWsjbGDGcCUhpRSlGgVSzJoFkdAqRDIuscQy3V9lChoBmgJaA9DCG5rC89LhRzAlIaUUpRoFUsyaBZHQKkQiN1hb4d1fZQoaAZoCWgPQwgj2Lj+Xf8awJSGlFKUaBVLMmgWR0CpEEW0qpcYdX2UKGgGaAloD0MI8parH5vEGcCUhpRSlGgVSzJoFkdAqRKoj4YaYXV9lChoBmgJaA9DCHibN04KwxHAlIaUUpRoFUsyaBZHQKkScFlCkXV1fZQoaAZoCWgPQwiILxNFSP0cwJSGlFKUaBVLMmgWR0CpEi/QSi/PdX2UKGgGaAloD0MIjXvzGyaqGsCUhpRSlGgVSzJoFkdAqRHsvIwM6XV9lChoBmgJaA9DCE+uKZDZeRfAlIaUUpRoFUsyaBZHQKkT53Qla8p1fZQoaAZoCWgPQwhaY9AJodMbwJSGlFKUaBVLMmgWR0CpE650Syt3dX2UKGgGaAloD0MICcIVUKj3GsCUhpRSlGgVSzJoFkdAqRNs43m3fHV9lChoBmgJaA9DCIPab+1EKRbAlIaUUpRoFUsyaBZHQKkTKNMGorF1fZQoaAZoCWgPQwghkEsceaAXwJSGlFKUaBVLMmgWR0CpFNPW6K+BdX2UKGgGaAloD0MI4V8EjZmkGMCUhpRSlGgVSzJoFkdAqRSa2Yv38HV9lChoBmgJaA9DCMCw/Pm2YBfAlIaUUpRoFUsyaBZHQKkUWVC5Vfh1fZQoaAZoCWgPQwjkEHFzKnkXwJSGlFKUaBVLMmgWR0CpFBWHk92YdX2UKGgGaAloD0MI31FjQsyVGMCUhpRSlGgVSzJoFkdAqRXZrpJPInV9lChoBmgJaA9DCOzCD86nfhfAlIaUUpRoFUsyaBZHQKkVoM+/xlR1fZQoaAZoCWgPQwiP5PIf0t8YwJSGlFKUaBVLMmgWR0CpFV9Qfp2VdX2UKGgGaAloD0MI85ApH4L6GsCUhpRSlGgVSzJoFkdAqRUbOiWVvHV9lChoBmgJaA9DCC82rRQCWRzAlIaUUpRoFUsyaBZHQKkWxvrnkkt1fZQoaAZoCWgPQwji5elcUVodwJSGlFKUaBVLMmgWR0CpFo33QD3edX2UKGgGaAloD0MIIZBLHHmwGcCUhpRSlGgVSzJoFkdAqRZMV+I/JXV9lChoBmgJaA9DCF+Wdmou1xzAlIaUUpRoFUsyaBZHQKkWCDIzWPN1fZQoaAZoCWgPQwgWpBmLpiMTwJSGlFKUaBVLMmgWR0CpF8KDTSb6dX2UKGgGaAloD0MIi/uPTIeuFcCUhpRSlGgVSzJoFkdAqReJt78ejnV9lChoBmgJaA9DCJbtQ95yTSDAlIaUUpRoFUsyaBZHQKkXSC4Bmwt1fZQoaAZoCWgPQwgTmbnA5QEgwJSGlFKUaBVLMmgWR0CpFwQRwqAjdX2UKGgGaAloD0MInZ0MjpI3GMCUhpRSlGgVSzJoFkdAqRizc2zfJnV9lChoBmgJaA9DCCVa8nhafhrAlIaUUpRoFUsyaBZHQKkYeth/iHZ1fZQoaAZoCWgPQwh7FK5H4UoZwJSGlFKUaBVLMmgWR0CpGDmgi/widX2UKGgGaAloD0MIC9XNxd9WGsCUhpRSlGgVSzJoFkdAqRf1iWmgrnV9lChoBmgJaA9DCLr4254gwRPAlIaUUpRoFUsyaBZHQKkZuV45cTt1fZQoaAZoCWgPQwhtUzwuqqUWwJSGlFKUaBVLMmgWR0CpGYBcZ9/jdX2UKGgGaAloD0MIEW+df7s8E8CUhpRSlGgVSzJoFkdAqRk/dO6/ZnV9lChoBmgJaA9DCNyeILHdXRfAlIaUUpRoFUsyaBZHQKkY+11nuiN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd129aebac0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd129ae6300>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 437324, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685228663952012075, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATlCoP0yeuDxiifC+ddayP01URT9aBvU+L+W+P1+seD4A5Kg+21STPOdGhr/Dpq++lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMxfaPwEND76VfhC/FomqP6znvD/ZeMc/4hDVP3zw3T4C2ks/6awxP/QH3L/CuIq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABOUKg/TJ64PGKJ8L7FRjS+voNhvr3aHz511rI/TVRFP1oG9T4Thva9rBo7v+imAz4v5b4/X6x4PgDkqD48r2g+knCWP/PIXj/bVJM850aGv8Omr76I4L6+qfuXv0vFLj+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.3149507 0.02253642 -0.46979815]\n [ 1.3971697 0.7708176 0.47856408]\n [ 1.4913691 0.24284504 0.3298645 ]\n [ 0.0179848 -1.0490388 -0.34306917]]", "desired_goal": "[[ 1.703833 -0.13969804 -0.5644315 ]\n [ 1.3323085 1.4758201 1.5583755 ]\n [ 1.6645777 0.43347538 0.7962953 ]\n [ 0.69404465 -1.7189927 -1.0837634 ]]", "observation": "[[ 1.3149507 0.02253642 -0.46979815 -0.17605121 -0.22022912 0.15610786]\n [ 1.3971697 0.7708176 0.47856408 -0.12037291 -0.73087573 0.12856638]\n [ 1.4913691 0.24284504 0.3298645 0.22723097 1.1753104 0.87025374]\n [ 0.0179848 -1.0490388 -0.34306917 -0.3728068 -1.1873676 0.68269795]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAu32bvdVgm72APBA+BUIGPbGLCL6Xh3o+eA0PPsUpuL2tVsM99AvIPZUUZj0j1TQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07592341 -0.07586829 0.14085579]\n [ 0.0327778 -0.13334538 0.24465786]\n [ 0.13969982 -0.08992342 0.09538016]\n [ 0.09767905 0.05617197 0.1765943 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.5626800000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbTfBN00f8r+UhpRSlIwBbJRLMowBdJRHQJOQirXDm8x1fZQoaAZoCWgPQwgH7dXHQz8AwJSGlFKUaBVLMmgWR0CTkBACW/rTdX2UKGgGaAloD0MI8nowKT5OGMCUhpRSlGgVSzJoFkdAk4+a7ZnL73V9lChoBmgJaA9DCNPbn4uGzPi/lIaUUpRoFUsyaBZHQJOPIpDu0C11fZQoaAZoCWgPQwiTGtoAbMD6v5SGlFKUaBVLMmgWR0CTkk7m+0w8dX2UKGgGaAloD0MISb2nctoTGsCUhpRSlGgVSzJoFkdAk5HUI9kjHHV9lChoBmgJaA9DCJT6srRT8xPAlIaUUpRoFUsyaBZHQJORXqhUR4B1fZQoaAZoCWgPQwiIhVrTvGP8v5SGlFKUaBVLMmgWR0CTkOZQpF1CdX2UKGgGaAloD0MI0A64rpjR/7+UhpRSlGgVSzJoFkdAk5QR8c+7lXV9lChoBmgJaA9DCFLuPsdHC/u/lIaUUpRoFUsyaBZHQJOTl2bG3nZ1fZQoaAZoCWgPQwjJdr6fGq/yv5SGlFKUaBVLMmgWR0CTkyH7gsK9dX2UKGgGaAloD0MISrVPx2OGAMCUhpRSlGgVSzJoFkdAk5KpvDP4VXV9lChoBmgJaA9DCNeEtMagk/6/lIaUUpRoFUsyaBZHQJOV38sMAm11fZQoaAZoCWgPQwhdGr/wSlLyv5SGlFKUaBVLMmgWR0CTlWUn5SFXdX2UKGgGaAloD0MIaf6Y1qYx/L+UhpRSlGgVSzJoFkdAk5Tv/io86nV9lChoBmgJaA9DCFKAKJgxdRPAlIaUUpRoFUsyaBZHQJOUd7IDHOt1fZQoaAZoCWgPQwhpNo/DYK4WwJSGlFKUaBVLMmgWR0CTl7X531SPdX2UKGgGaAloD0MIj3Ba8KIPAMCUhpRSlGgVSzJoFkdAk5c7d30PH3V9lChoBmgJaA9DCFTE6SRbfQHAlIaUUpRoFUsyaBZHQJOWxn+Q2dd1fZQoaAZoCWgPQwimK9hGPDkJwJSGlFKUaBVLMmgWR0CTlk63AmAtdX2UKGgGaAloD0MILPGAsil3GcCUhpRSlGgVSzJoFkdAk5l6eGwiaHV9lChoBmgJaA9DCF4R/G8lO/W/lIaUUpRoFUsyaBZHQJOY/4ubqhV1fZQoaAZoCWgPQwi/nq9ZLjsCwJSGlFKUaBVLMmgWR0CTmIoVEd/8dX2UKGgGaAloD0MI/3Vu2oxzGcCUhpRSlGgVSzJoFkdAk5gR4Y77sXV9lChoBmgJaA9DCMvbEU4LngDAlIaUUpRoFUsyaBZHQJOcEgfU4Jh1fZQoaAZoCWgPQwh1lIPZBJj8v5SGlFKUaBVLMmgWR0CTm5hH9WIXdX2UKGgGaAloD0MIBmfw94tZ/b+UhpRSlGgVSzJoFkdAk5sj6ab4J3V9lChoBmgJaA9DCNR+aydKYgjAlIaUUpRoFUsyaBZHQJOardFfAsV1fZQoaAZoCWgPQwgzMshdhAkMwJSGlFKUaBVLMmgWR0CTntZDiOvMdX2UKGgGaAloD0MIHCRE+YIW+7+UhpRSlGgVSzJoFkdAk55dFKCg9XV9lChoBmgJaA9DCF0xI7w9aBbAlIaUUpRoFUsyaBZHQJOd6vyLAHp1fZQoaAZoCWgPQwjScqCH2nYRwJSGlFKUaBVLMmgWR0CTnXOzY287dX2UKGgGaAloD0MI662BrRIs/L+UhpRSlGgVSzJoFkdAk6Gtuk1uSHV9lChoBmgJaA9DCB+5Nem25BnAlIaUUpRoFUsyaBZHQJOhM8mrsB11fZQoaAZoCWgPQwixaaUQyCUSwJSGlFKUaBVLMmgWR0CToL9GZuyedX2UKGgGaAloD0MIMiB7vfvDF8CUhpRSlGgVSzJoFkdAk6BHtrsSkHV9lChoBmgJaA9DCKshcY+lz/e/lIaUUpRoFUsyaBZHQJOkszqKP4p1fZQoaAZoCWgPQwjGNqlorP38v5SGlFKUaBVLMmgWR0CTpDo0ALiNdX2UKGgGaAloD0MIiSgmb4AJFsCUhpRSlGgVSzJoFkdAk6PF+AmReXV9lChoBmgJaA9DCPNYMzLIjRbAlIaUUpRoFUsyaBZHQJOjTtOVPep1fZQoaAZoCWgPQwhDke7nFMQWwJSGlFKUaBVLMmgWR0CTp65+6RQrdX2UKGgGaAloD0MI18IstHNaDcCUhpRSlGgVSzJoFkdAk6c3solUqHV9lChoBmgJaA9DCDj1geSdYwDAlIaUUpRoFUsyaBZHQJOmxQcghbJ1fZQoaAZoCWgPQwhcBTHQtU8OwJSGlFKUaBVLMmgWR0CTpk45cTrWdX2UKGgGaAloD0MIk6rtJvhmFcCUhpRSlGgVSzJoFkdAk6q7Pt2LYXV9lChoBmgJaA9DCGJNZVHYdRfAlIaUUpRoFUsyaBZHQJOqQu27Wd51fZQoaAZoCWgPQwj/B1irds0PwJSGlFKUaBVLMmgWR0CTqdAo5PuYdX2UKGgGaAloD0MIcJUnEHaK+7+UhpRSlGgVSzJoFkdAk6lZgCwKSnV9lChoBmgJaA9DCDW3QliNJf6/lIaUUpRoFUsyaBZHQJOttPXTVlR1fZQoaAZoCWgPQwjX+bfLfj0MwJSGlFKUaBVLMmgWR0CTrTt03fhudX2UKGgGaAloD0MIFk1nJ4Oj+r+UhpRSlGgVSzJoFkdAk6zHJT2nKnV9lChoBmgJaA9DCI3xYfay7QTAlIaUUpRoFUsyaBZHQJOsUYDTz/Z1fZQoaAZoCWgPQwhnYORlTQwCwJSGlFKUaBVLMmgWR0CTsI4BV+7UdX2UKGgGaAloD0MIcZAQ5QvaCMCUhpRSlGgVSzJoFkdAk7ATFAE+xHV9lChoBmgJaA9DCPJ376gxYQrAlIaUUpRoFUsyaBZHQJOvncTJyQx1fZQoaAZoCWgPQwh6OIHptC4YwJSGlFKUaBVLMmgWR0CTryVjqfOEdX2UKGgGaAloD0MIxedOsP/6+r+UhpRSlGgVSzJoFkdAk7JDdP+GXXV9lChoBmgJaA9DCP9BJEOObQzAlIaUUpRoFUsyaBZHQJOxyG47Rv51fZQoaAZoCWgPQwiqKck6HD0AwJSGlFKUaBVLMmgWR0CTsVL127nQdX2UKGgGaAloD0MI7fMY5ZmXD8CUhpRSlGgVSzJoFkdAk7DafJ3gUHV9lChoBmgJaA9DCBcNGY9Syfe/lIaUUpRoFUsyaBZHQJO0HOC5Etx1fZQoaAZoCWgPQwiT4Xg+A2oHwJSGlFKUaBVLMmgWR0CTs6H3lCC0dX2UKGgGaAloD0MIeo1donqrFcCUhpRSlGgVSzJoFkdAk7Msj7hvSHV9lChoBmgJaA9DCAmLijidFBbAlIaUUpRoFUsyaBZHQJOytCY1He91fZQoaAZoCWgPQwiaeAd40qIBwJSGlFKUaBVLMmgWR0CTteDdxhlUdX2UKGgGaAloD0MIR5OLMbD+FsCUhpRSlGgVSzJoFkdAk7Vl6u4gBHV9lChoBmgJaA9DCBkfZi/brgPAlIaUUpRoFUsyaBZHQJO08PtlZox1fZQoaAZoCWgPQwhZNJ2dDA4DwJSGlFKUaBVLMmgWR0CTtHihFmWddX2UKGgGaAloD0MIkgN2NXmqC8CUhpRSlGgVSzJoFkdAk7eZFb3XZ3V9lChoBmgJaA9DCMcNv5tuWQ7AlIaUUpRoFUsyaBZHQJO3HivPkaN1fZQoaAZoCWgPQwhKfy+FBy0QwJSGlFKUaBVLMmgWR0CTtqi1iONpdX2UKGgGaAloD0MIsHWpEfrZE8CUhpRSlGgVSzJoFkdAk7Yww0wai3V9lChoBmgJaA9DCB8vpMND+AnAlIaUUpRoFUsyaBZHQJO5YqoZQ551fZQoaAZoCWgPQwiW0F0SZwUTwJSGlFKUaBVLMmgWR0CTuOfNA1NydX2UKGgGaAloD0MItydIbHdP/b+UhpRSlGgVSzJoFkdAk7hyjL0SRXV9lChoBmgJaA9DCBLb3QN0vw/AlIaUUpRoFUsyaBZHQJO3+lFc6eZ1fZQoaAZoCWgPQwjNWZ9yTLYPwJSGlFKUaBVLMmgWR0CTuzaePJaJdX2UKGgGaAloD0MIEw69xcObBsCUhpRSlGgVSzJoFkdAk7q7nxJ/X3V9lChoBmgJaA9DCKEt51Jc1SDAlIaUUpRoFUsyaBZHQJO6RmPHT7V1fZQoaAZoCWgPQwhM3ZVdMDj4v5SGlFKUaBVLMmgWR0CTuc6FM7EHdX2UKGgGaAloD0MIsTbGTnj5E8CUhpRSlGgVSzJoFkdAk70R3iaRZHV9lChoBmgJaA9DCAXhCijUU/e/lIaUUpRoFUsyaBZHQJO8lvIfbK11fZQoaAZoCWgPQwi6Mqg2OJEbwJSGlFKUaBVLMmgWR0CTvCHPu5SWdX2UKGgGaAloD0MIwxA5fT0f/L+UhpRSlGgVSzJoFkdAk7upUtI07HV9lChoBmgJaA9DCB+5Nem2ZAfAlIaUUpRoFUsyaBZHQJO+9kYoAn51fZQoaAZoCWgPQwiMaaZ7nRQCwJSGlFKUaBVLMmgWR0CTvntgrpaBdX2UKGgGaAloD0MIkq8EUmL3CsCUhpRSlGgVSzJoFkdAk74GEbo8p3V9lChoBmgJaA9DCE/OUNzx5v+/lIaUUpRoFUsyaBZHQJO9jaoMrmR1fZQoaAZoCWgPQwggJuFCHjERwJSGlFKUaBVLMmgWR0CTwNvXbuc+dX2UKGgGaAloD0MIq3tkc9X8C8CUhpRSlGgVSzJoFkdAk8BhkiD/VHV9lChoBmgJaA9DCL6+1qVGqPq/lIaUUpRoFUsyaBZHQJO/7Cbc45t1fZQoaAZoCWgPQwjjN4WVCooQwJSGlFKUaBVLMmgWR0CTv3PHDJlrdX2UKGgGaAloD0MIOUVHcvkP/b+UhpRSlGgVSzJoFkdAk8Kv+n62v3V9lChoBmgJaA9DCMkeoWZINQzAlIaUUpRoFUsyaBZHQJPCNQCSzPd1fZQoaAZoCWgPQwj7XdiarXwHwJSGlFKUaBVLMmgWR0CTwb+m3vx6dX2UKGgGaAloD0MI7KF9rOBHEMCUhpRSlGgVSzJoFkdAk8FHT3IuG3V9lChoBmgJaA9DCMkBu5o8Jf6/lIaUUpRoFUsyaBZHQJPEh9w3o9t1fZQoaAZoCWgPQwijc36K4+ACwJSGlFKUaBVLMmgWR0CTxA1hb4ahdX2UKGgGaAloD0MIkIMSZtq+9b+UhpRSlGgVSzJoFkdAk8OX8baRIXV9lChoBmgJaA9DCHkDzHwHXw7AlIaUUpRoFUsyaBZHQJPDIBRyfcx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 21866, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -5.78267146749422, "std_reward": 1.3490182904977386, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-26T23:30:13.884814"}
 
1
+ {"mean_reward": -3.305570374196395, "std_reward": 1.494104760676988, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-27T23:25:38.668289"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1c897ae1bc46f82d90663ceb7930a8fd1e37b981cbb6fd2eb76e44d35a18fedd
3
  size 2387
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d556130c3ac03f184b97a5b1597622ea4c66fc9ab0053545375f7194865e2039
3
  size 2387